Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic evolution of tumours according to their growth dynamics

11.01.2008
A study co directed by the Universidad Complutense de Madrid and La Paz hospital in Madrid identifies a protein of high expression in cells located at the tumour boundary that could play an essential role in the evolution of tumours and their invasive potential.

It is well accepted that tumour growth is a very complex process with many intervening factors, and in spite of being the subject of most investigations on a global scale; there are still many aspects that remain unknown, one of the most interesting of which is the relation between the dynamics of solid tumour growth and their gene expression.

The universal dynamics of tumour growth (Brú A, Albertos S, Luis Subiza J, García-Asenjo JL, Brú I. Biophys J. 2003) established that the growth dynamics of all tumours is similar. Such growth dynamics implied that the growth rate of the tumour follows a lineal function and that most of its activity takes place at the outer tumour boundary. This establishes a huge difference in the number of cell divisions that a cell located at the tumour boundary undergoes from the original tumour cell, when compared to the traditional model based on the Gompertzian growth pattern. Considering a tumour 2 cm3 in volume, following the previous model, a cell at the boundary of the tumour will divide 32 times from the original tumour seed, and using the new growth dynamics for solid tumour, the number of boundary cell divisions is estimated at 800 times from the original tumour seed.

Bearing in mind that there is a correlation between the genetic evolution (accumulation of anomalies and aberrations) and the number of cell divisions of a cell, and that the cells at the tumour boundary are always the ones with the largest number of divisions, there must exist a difference in the genetic expression inside the solid tumour depending on the distance from the tumour seed. Based on this hypothesis, the research groups managed by Dr. Antonio Brú from the department of applied mathematics at the Universidad Complutense de Madrid and Dr. López-Collazo from the research and investigation department at the La Paz hospital in Madrid, started working on the study of the genetic expression profiles of sample cells from the C6 cell line of brain tumours inoculated in rats. Several researchers from different Spanish research institutions participated in the study; the genetic expression of samples at the centre, the outer tumour boundary and the healthy adjacent tissue were analysed.

... more about:
»Brú »Dynamics »Evolution »Genetic »Solid

The results of the investigation are now published in the December edition of the specialised magazine Medical Oncology (Position-dependent expression of GADD45alpha in rat brain tumours. Brú A, Del Fresno C, Soares-Schanoski A, Albertos S, Brú I, Porres A, Rollán-Landeras E, Dopazo A, Casero D, Gómez-Piña V, García L, Arnalich F, Alvarez R, Rodríguez-Rojas A, Fuentes-Prior P, López-Collazo E. Med Oncol. 2007;24 (4):436-44). Among the conclusions reached, the most relevant comes from the difference in the nuclear protein GADD45a, which regulates the cellular response to DNA damage and stress signals. This protein is expressed in many normal tissues, particularly in cells in a quiescent state (G0 phase of the cell cycle). The concentration of GADD45a increases during G1 phase of the cell cycle and greatly decreases when the cell is at S phase, demonstrating its crucial role in the response function to many stress or genotoxic signals. This protein has also been related to the programmed cell-death, the survival of cells and their innate immunity. In particular, it has been demonstrated that it inhibits cyclin B/CDC2, which constitutes a protein complex that controls the transition G2/M in the cellular cycle.

According to the conclusions, this protein is expressed in much higher levels at the boundary than at the inside of solid tumours. This gives GADD45a a more important role in the evolution of the tumour and its invasive capability. The control of this cellular apoptosis regulator at the tumour expansion boundary is predicted by the universal dynamics of tumour growth elaborated by Dr. Brú and his team over the last few years. These results allow for a better understanding of the genetic and phenotypic evolution that are currently explained in different theories of evolution as well as relating it to the growth dynamics of the tumour.

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Brú Dynamics Evolution Genetic Solid

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>