Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulp NonFiction: Fungal Analysis Reveals Clues for Targeted Biomass Deconstruction

23.03.2012
Without fungi and microbes to break down dead trees and leaf litter in nature, the forest floor might look like a scene from TV's "Hoarders."

Massive-scale genome sequencing projects supported by the U.S. Department of Energy (DOE) and being carried out at the DOE Joint Genome Institute (JGI) highlight the importance of learning how the cellulose, hemicellulose and lignin that serve as a plant's infrastructure can be broken down by these forest organisms to extract needed nutrients. Among the fungi being studied are species that can selectively break down the cell wall components cellulose and lignin - the number one and two most abundant biopolymers on Earth.

In a study published online the week of March 19, 2012 in the Proceedings of the National Academy of Sciences, an international team of scientists presented a comparative genomic analysis of two white rot fungi whose genomes were generated and annotated at the DOE JGI under the Community Sequencing Program (CSP). Both the fungus Phanaerochaete chrysosporium (sequenced by DOE JGI in 2004), and its close relative Ceriporiopisis subvermispora are found all over the world and are of interest to bioenergy researchers because they possess enzymes that can break down plant biomass and could therefore be useful for accelerating biofuels production. The study revealed substantial differences among the sets of genes involved in lignocellulose degradation, providing further insight into the mechanics of how white rots do their dirty work.

"The fact that we have such a large group of people involved in this project is a clear demonstration that there's certainly interest in enzyme discovery," said study senior author and DOE JGI collaborator Dan Cullen of the U.S. Department of Agriculture Forest Service, Forest Products Laboratory (FPL). "In this particular case though, one would come away thinking more about the role of white rot fungi in the carbon cycle. Lignin is a recalcitrant compound in forest ecosystem biomass and very few fungi have the capability to degrade lignin. Even fewer fungi have the ability to selectively remove lignin at such an efficient rate. C. subvermispora is one exception in its ability to do just that."

Cullen and his colleagues compared the fungal genomes to learn more about the basis of C. subvermispora's ability to selectively break down lignin. Understanding this process of selective ligninolysis is of longstanding interest to the pulp and paper industry. According to the American Forest & Paper Association, approximately $175 billion worth of forest products such as pulp and paper are produced annually, and account for five percent of the nation's GDP.

Analyzing the diversity of wood-decaying fungi and cataloging enzymes involved in lignocellulose degradation is one of the goals of the DOE JGI Fungal Genomics Program led by Igor Grigoriev. "We are in the process of conducting functional comparative genomics of more than 20 such fungi sequenced or currently being sequenced at the DOE JGI," he said. "This should provide us a better understanding of the diverse and complex mechanisms of lignocellulose degradation in fungi, the influence of these mechanisms on carbon cycling in the forest ecosystem, and ultimately lead to improvements in biopulping."

Kent Kirk, a former FPL researcher who is considered a leading figure in the study of lignin degradation by fungi, provided perspective on how the current research could impact the pulp and paper industry. "This grew out of fundamental research by the University of Minnesota and the FPL where they applied the concept of 'biopulping' - the partial decay of wood by lignin-degrading fungi to decrease the energy required for mechanical pulping. Cerioporiopsis subvermispora quickly became the 'biopulper' of choice." Kirk described how wood chips treated with the fungus for two weeks required 30% less energy for pulping than untreated chips and how outdoor trials were repeatedly successful at the 50-ton scale. "The technology has not yet been commercially adopted, but as energy costs continue to rise, it should be increasingly attractive for implementation," Kirk said.

With detailed biochemical analyses conducted by study co-author Angel Martinez's team at the Spanish National Research Council (CSIC) in Madrid, Spain, the researchers found that the C. subvermispora genome had more manganese peroxidases and laccase - enzymes that may speed the degradation of lignin - than the P. chrysosporium genome. Martinez added that his group's work also revealed the presence of other lignin-degrading enzymes that had not previously been found in C. subvermispora cultures.

"Since Phanaerochaete doesn't have laccases, they're not absolutely necessary for lignin degradation," said Cullen, "though it could be that they're very important and play a role in Ceriporiopisis. The most persuasive part of the data are the expansion and expression of the manganese peroxidases, whose role in lignin degradation is more generally accepted."

Cullen added that the paper also suggests the cellulose-degrading portion of C. subvermispora's genome is "somewhat repressed" relative to P. chrysosporium, another angle of further study to understand the Ceriporiopisis genome's selectivity for lignin. "It could be both," he said, "There's not a simple clear final answer. To really make direct progress on understanding the mechanism of selective lignin degradation, will require development of more experimental tools, such as those for genetic analysis. That is what's next."

The DOE JGI, which has sequenced more fungi than any other institution in the world, recently issued the 2013 call for Community Sequencing Program (CSP) Letters of Intent for large-scale sequence-based genomic science projects. This call targets topics of relevance to DOE missions in alternative fuels, global carbon cycling, and biogeochemistry. Up to 50% of capacity for the 2013 CSP will be allocated for projects that address areas of plant and plant-microbe interactions, microbial emission and capture of greenhouse gases, metagenomics, and exploit such DOE JGI capabilities as single-cell genomics and DNA synthesis. For more information, go to http://1.usa.gov/JGI-CSP13.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>