Forces among Molecules: Tiny but important

Theoretical chemists like Dr. £ukasz Tomasz Rajchel (University of Warsaw) are familiar with that. However, they – or rather their computers – are not capable of calculating them with high accuracy and efficiency at the same time.

The scholarship holder of the Alexander von Humboldt Foundation wants to get to the bottom of the computational problem while working in Prof. Dr. Georg Jansen’s Theoretical Organic Chemistry team at the University Duisburg-Essen (UDE).

Since intermolecular forces are very small, the computational technique must be very precise. Furthermore, getting significant results by experiment is difficult. For solving the task £ukasz Rajchel refers to various approximations of quantum chemistry. ‘They form my theoretical basis and shall help me develop new approaches for calculating intermolecular energies.’ The 30 year old chemist solves the underlying equations with the help of self-developed computer codes.

The more £ukasz Rajchel and his colleagues get to know about the interactions between chemical compounds, the better they can understand matter and predict its characteristics. The significance of those tiny forces cannot be stressed enough. ‘They are substantial in nature’, says Dr. Rajchel. For example: they are responsible for DNA and RNA’s stability in genetic information or for the existence of molecular crystals and the proteins’ structure. Interestingly, they also let the gecko walk on vertical glass surfaces.

Clue for picture editors:
You can download a photo of Dr. Rajchel (on the left) at:
http://www.uni-due.de/de/presse/pi_fotos.php (photo: private).
Further information:
Prof. Dr. Georg Jansen, phone 049 201/183-4421, georg.jansen@uni-due.de
Dr. £ukasz Tomasz Rajchel, phone 049 201/183-3877, L.Rajchel@icm.edu.pl
Editor: Alexandra Niessen, phone 049 203/379-2461

Media Contact

Beate Kostka idw

Further information:

http://www.uni-due.de

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Optically Active Defects Improve Carbon Nanotubes

Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects….

Visualizing the motion of vortices in superfluid turbulence

Nobel laureate in physics Richard Feynman once described turbulence as “the most important unsolved problem of classical physics.” Understanding turbulence in classical fluids like water and air is difficult partly…

Toward a reliable oral treatment for sickle cell disease

For the millions of people worldwide who have sickle cell disease, there are only a few treatment options, which include risky bone marrow transplants, gene therapy or other treatments that…

Partners & Sponsors