Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins hoist the anchor

06.08.2013
PNAS: How switch proteins are extracted from the membrane

Researchers from the Ruhr-Universität Bochum (RUB) and from the MPI Dortmund have for the first time successfully reproduced the recycling process of proteins regulating cellular transport in a biophysical experiment. In doing so, they traced in detail the way the central switch protein Rab is being extracted from the lipid membrane.


The Rab protein (grey and magenta) with bound GDP (multi-coloured) sits on a membrane surface. As the infrared ray is reflected from the surface, the processes that take place on the membrane can be studied. The GDI, represented by the hand, seizes the Rab protein and extracts it from the membrane. The timeline of the infrared spectra (top centre) is resolved in the spectrometer (top right).

Credit: Konstantin Gavriljuk, RUB

The team of PD Dr Carsten Kötting, Prof Dr Klaus Gerwert (Department of Biophysics, RUB) and Prof Dr Roger S. Goody (Max Planck Institute for Molecular Physiology, Dortmund) has published the spectroscopic and dynamic data in the PNAS journal's Online Early Edition. "Until now, this protein's interactions have only ever been studied in a solution – i.e. without a lipid membrane. The step into the protein's natural environment opens up entirely new possibilities," says Carsten Kötting. This is because many disease-relevant protein interactions within a cell take place on a membrane.

From solution to membrane

Unlike Ras proteins that regulate cell growth, Rab GTPases control the traffic between different cell sections. Just like Ras proteins, Rab GTPases (also called Rab proteins) act as switches. Turned "on", the high-energy GTP molecule is bound; turned "off", the lower-energy GDP molecule is bound. The switch protein Rab does not simply swim through the cell with the trafficked load it is carrying; rather, it is fixed within the membrane by means of lipid anchors. After the trafficking stage has been successfully completed, Rab is extracted from the membrane and recycled. This process has never yet been simulated in a biophysical experiment. The Bochum-Dortmund team has succeeded in manufacturing the Rab protein with the membrane anchor in its active form in large quantities, to bind it to an artificial lipid membrane and to investigate the process of extracting the switch protein from the membrane in a spectrometer.
Seize and pull hard

For this purpose, biophysicists used the method of ATR infrared spectroscopy, which enabled them to visualise processes on surfaces such as lipid membranes. They paid particular attention to the GDI protein that binds the Rab protein and its lipid anchor. The question was whether Rab dissociates spontaneously from the membrane and is seized by GDI or whether GDI plays an active part in the Rab recycling process. With ATR spectroscopy, the team was for the first time able to differentiate between these two processes and demonstrate the GDI protein's active role. "We observed that GDI approaches the membrane and seizes the Rab protein then and there," explains Konstantin Gavriljuk. "Thus, Rab is extracted from the membrane by GDI much more quickly than it would have otherwise dissociated."
Legionella affect cellular trafficking processes

Rab GTPases and their interaction partners have an impact on certain diseases, for example some forms of mental disabilities and legionnaire's disease. The agents causing legionnaire's disease, namely legionella, attack Rab proteins and modify them chemically, thus affecting cellular trafficking processes; they are thus able to reproduce in human cells. The experiments have shown that the chemical modification caused by legionella inhibits the process of Rab extraction from the membrane by GDI. "We have now gained a better understanding of where legionella attack cells and of the consequences thereof," says Carsten Kötting.

Project funding

The project funds are supplied by SFB 642 "GTP and ATP-dependent Membrane Processes", whose spokesperson is Prof Gerwert.

Bibliographic record

K. Gavriljuk, A. Itzen, R.S. Goody, K. Gerwert, C. Kötting (2013): Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy, PNAS, doi:10.1073/pnas.1307655110
Further information

Prof Dr Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail: klaus.gerwert@bph.rub.de

PD Dr Carsten Kötting, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail: Koetting@bph.rub.de

A click away

Previous information re.: Rab
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00416.html.en
Editor: Dr. Julia Weiler

Dr. Carsten Kötting | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>