Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeny of old parents have fewer offspring

10.03.2015

Long-term study in house sparrows shows a transgenerational age effect

Reproduction at old age involves risks that may impact ones’ own life and may impose reduced biological fitness on the offspring.


Male house sparrow: any offspring of his produced at an older age will also produce fewer young.

© A.Sanchez-Tojar

Such evidence, previously obtained in humans and other taxa under laboratory conditions, has now been confirmed by researchers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues from the UK and New Zealand for the first time in free-living animals.

In a long-term study on a population of house sparrows they found that offspring of older parents themselves produced fewer young. Such a transgenerational effect is important for the understanding of the evolution of longevity.

Fertility does not decrease in all taxa with increasing age but may remain constant lifelong as is the case of some invertebrates or may even increase with increasing age as in some reptiles. Generally both sexes are able to reproduce at old age, with males capable of producing more offspring than females.

In some mammals such as humans male individuals remain fertile for a longer time compared to females that at some stage enter the menopause. However, reproducing at old age may incur risks such as a higher infant mortality or chromosomal anomalies. Moreover, children of old parents have themselves fewer offspring or have a shorter lifespan, which is commonly known as the “Lansing effect” that was demonstrated not only in humans but also in mice and some invertebrates in the laboratory but never in free living populations.

Julia Schroeder from the Max Planck Institute for Ornithology in Seewiesen has now investigated this effect in a population of house sparrows together with colleagues from the University of Sheffield and the University of Otago in New Zealand. Their study site is a small island off the coast of Devon in Southwestern England where the researchers have monitored and ringed the entire house sparrow population in the course of more than 10 years.

The researchers took blood samples from the parents and their offspring in order to determine genetic parentage. That way they obtained a unique and detailed genetic pedigree of more than 5000 birds with a precise knowledge of the age and the number of offspring for each individual. Birds stayed the entire life on this remote island that is 19 km off the coast.

During 12 years, only four sparrows could genetically not be assigned to parents living on the island, suggesting that these birds were immigrants. To test whether a possible effect is inherited or due to environmental factors entire clutches were systematically cross-fostered.

The analysis revealed a clear result. First, old mothers had a negative effect on the fitness of their daughters, meaning that these daughters produced fewer young. Similarly, older fathers produced sons that had fewer offspring. In particular, this has negative consequences for offspring that resulted from extra-pair matings, as a previous study has shown that house sparrow females seek extra-pair matings preferably with older males. Hence, according to the results of the present study, a female strategy to mate with viable males proves to be disadvantageous.

“Thus, these results cannot be explained by changes of the environment but rather by the constitution of the parents, which changes with increasing age through epigenetic processes. This transgenerational age effect may change the selection pressure on longevity within a population”, says Julia Schroeder, first author of the study. “The results are potentially important for breeding management programs of endangered species that often use old individuals from different populations to maintain genetic variability”, adds the researcher.


Contact

Dr. Julia Schroeder
Research Group Leader

Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-437

Email: jschroeder@orn.mpg.de


Dr. Stefan Leitner
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421

Fax: +49 8157 932-209

Email: leitner@orn.mpg.de


Original publication
Julia Schroeder, Shinichi Nakagawa, Mark Rees, Maria Elena Mannarelli, Terry Burke

Reduced fitness in progeny from old parents in a natural population

PNAS

Dr. Julia Schroeder | Max Planck Institute for Ornithology, Seewiesen

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>