Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants 'Remember' Drought, Change Responses to Survive

16.03.2012
Plants subjected to a previous period of drought learn to deal with the stress thanks to their memories of the experience, new research has found.

The findings, published this week, could lead to development of crops better able to withstand drought.

The research also confirms for the first time the scientific basis for what home gardeners and nursery professionals have often learned through hard experience: Transplants do better when water is withheld for a few days to drought harden them before the move.

"This phenomenon of drought hardening is in the common literature but not really in the academic literature," said Michael Fromm, a University of Nebraska-Lincoln plant scientist who was part of the research team. "The mechanisms involved in this process seem to be what we found."

Working with Arabidopsis, a member of the mustard family considered an excellent model for plant research, the team of Fromm, plant molecular biologist Zoya Avramova and post-doctoral fellow Yong Ding compared the reaction of plants that had been previously stressed by withholding water to those not previously stressed.

The pre-stressed plants bounced back more quickly the next time they were dehydrated. Specifically, the nontrained plants wilted faster than trained plants and their leaves lost water at a faster rate than trained plants.

"The plants 'remember' dehydration stress. It will condition them to survive future drought stress and transplanting," Fromm said.

The team found that the trained plants responded to subsequent dehydration by increasing transcription of a certain subset of genes. During recovery periods when water is available, transcription of these genes returns to normal levels, but following subsequent drought periods the plants remember their transcriptional response to stress and induce these genes to higher levels in this subsequent drought stress.

"All of this is driven by events at the molecular level," Avramova said. "We demonstrate that this transcriptional memory is associated with chromatin changes that seem to be involved in maintaining this memory."

Arabidopsis forgets this previous stress after five days of watering, though other plants may differ in that memory time.

This is the first instance of transcriptional memory found in any life form above yeasts.

This discovery may lead to breeding or engineering of crops that would better withstand drought, although practical applications of these findings in agriculture are years away, Fromm said.

"We're a long way off. We're just starting to get a basic understanding," Fromm said. "It's possible plants overreact to a first drought stress. They panic, they slow down more than they need to."

Perhaps scientists can modify those instincts in plants to help maintain or improve productivity during times of drought, he added.

But home gardeners can make immediate use of these findings.

"If I was transplanting something, I would deprive it of water for a couple of days, then water overnight, then transplant," Fromm said.

The work is the subject of an article this week in the online journal Nature Communications and is funded by the National Science Foundation.

Michael E. Fromm | Newswise Science News
Further information:
http://www.unl.edu

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>