Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paying attention as the eyes move

06.03.2018

The visual system optimally maintains attention on relevant objects even as eye movements are made, shows a study by the German Primate Center

During daily life, we routinely pay attention to a few important objects in our visual scene. We are even able to do this while we make eye movements to monitor the rest of the scene. Just as moving a camera moves the location of objects within the camera’s display, each eye movement moves the representation of the visual scene on the retina (the eye’s receptor surface).


Cartoon demonstrating that different neurons represent an attended stimulus across an eye-movement.

Image: Tao Yao


Tao Yao, first author of the study and former PhD student at the Cognitive Neuroscience Laboratory, DPZ.

Photo: DPZ

Neuroscientists Tao Yao, Stefan Treue and B. Suresh Krishna from the German Primate Center (DPZ) in Göttingen, Germany, wanted to understand the neural mechanisms that allow us to maintain attention on important objects even as the visual representation moves on the retina with each eye movement.

Their study shows that the rhesus macaque’s brain quickly and efficiently shifts attention with each eye-movement in a well-synchronized manner. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results may help understand disorders like schizophrenia, visual neglect and other attention deficit disorders (Nature Communications).

The human (and monkey) eye can be conceived as acting like a camera: light enters the eye and falls on the retina, where it is converted into neural activity that is interpreted by our brain to provide us with a sense of vision. The central part of the retina is specialized for more sensitive, higher-definition vision than the border areas.

During natural vision, we therefore scan the scene by moving our eye two to three times every second so that its center falls on different parts of the scene. At the same time, we also maintain our attention on important parts of the scene: for example, a mother may look around the world even as she continues to pay attention to her child. Paying attention to the child requires that the brain enhances the processing of neurons that respond to the child.

However, this poses a challenging problem for the brain when eye-movements are made, because with each eye-movement, the image of the child falls on a different location on the retina. Since different locations on the retina stimulate different visual neurons in the brain, this means that one set of visual neurons responds to the child before the eye-movement, while a different second set of neurons responds to the child after the eye-movement.

Thus, to optimally maintain attention on the child, the brain has to enhance the responses of the first set of neurons right until the eye-movement begins and then switch to enhance the responses of the second set of neurons right around when the eye-movement ends. However, whether attention switches are fast and well-synchronized with eye-movements is not known, since the time-course of the switch of attentional enhancement had never been measured until now.

In order to address this, neuroscientists Tao Yao, Stefan Treue and Suresh Krishna of the German Primate Center (DPZ) examined the responses of many single neurons in the brain of two rhesus monkeys while they attended to a stimulus without directly looking at it and made an eye-movement while maintaining attention on this stimulus. To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey’s brain and recorded the neurons’ electrical activity.

Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey’s brain known as area MT, the scientists were able to show that attentional enhancement indeed switches from the first set of neurons to the second set of neurons in a fast and saccade-synchronized manner. Attentional enhancement in the brain is therefore well-timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

“Our study shows how the primate brain is able to ideally keep paying attention to relevant objects even while making frequent eye-movements”, says Tao Yao, first author of the publication. It supports the idea that the visual attention system and the eye-movement system operate in a synchronized, well co-ordinated manner. “Our results answer several important questions about how the sensory and motor parts of the brain interact and co-ordinate with each other. Also, because co-ordinated sensorimotor function is known to be impaired in schizophrenia, visual neglect and other brain disorders, our results may help improve our understanding of these diseases”, Tao Yao comments on the findings.

Original publication

Tao Yao, Stefan Treue and B. Suresh Krishna: Saccade-synchronized rapid attention shifts in macaque visual cortical area MT. Nature Communications, doi 10.1038/s41467-018-03398-3


Contact

Dr. Dr. med. Suresh Krishna
Tel: +49 551 3851-354
E-mail: skrishna@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

Printable Images

Printable images are provided by the DPZ’s public relations department or may be downloaded from the photo database of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 93 research and infrastructure institutions of the Leibniz Association in Germany.

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4301 - Printable pictures
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4301 - Press release on DPZ website

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>