Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paying attention as the eyes move

06.03.2018

The visual system optimally maintains attention on relevant objects even as eye movements are made, shows a study by the German Primate Center

During daily life, we routinely pay attention to a few important objects in our visual scene. We are even able to do this while we make eye movements to monitor the rest of the scene. Just as moving a camera moves the location of objects within the camera’s display, each eye movement moves the representation of the visual scene on the retina (the eye’s receptor surface).


Cartoon demonstrating that different neurons represent an attended stimulus across an eye-movement.

Image: Tao Yao


Tao Yao, first author of the study and former PhD student at the Cognitive Neuroscience Laboratory, DPZ.

Photo: DPZ

Neuroscientists Tao Yao, Stefan Treue and B. Suresh Krishna from the German Primate Center (DPZ) in Göttingen, Germany, wanted to understand the neural mechanisms that allow us to maintain attention on important objects even as the visual representation moves on the retina with each eye movement.

Their study shows that the rhesus macaque’s brain quickly and efficiently shifts attention with each eye-movement in a well-synchronized manner. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results may help understand disorders like schizophrenia, visual neglect and other attention deficit disorders (Nature Communications).

The human (and monkey) eye can be conceived as acting like a camera: light enters the eye and falls on the retina, where it is converted into neural activity that is interpreted by our brain to provide us with a sense of vision. The central part of the retina is specialized for more sensitive, higher-definition vision than the border areas.

During natural vision, we therefore scan the scene by moving our eye two to three times every second so that its center falls on different parts of the scene. At the same time, we also maintain our attention on important parts of the scene: for example, a mother may look around the world even as she continues to pay attention to her child. Paying attention to the child requires that the brain enhances the processing of neurons that respond to the child.

However, this poses a challenging problem for the brain when eye-movements are made, because with each eye-movement, the image of the child falls on a different location on the retina. Since different locations on the retina stimulate different visual neurons in the brain, this means that one set of visual neurons responds to the child before the eye-movement, while a different second set of neurons responds to the child after the eye-movement.

Thus, to optimally maintain attention on the child, the brain has to enhance the responses of the first set of neurons right until the eye-movement begins and then switch to enhance the responses of the second set of neurons right around when the eye-movement ends. However, whether attention switches are fast and well-synchronized with eye-movements is not known, since the time-course of the switch of attentional enhancement had never been measured until now.

In order to address this, neuroscientists Tao Yao, Stefan Treue and Suresh Krishna of the German Primate Center (DPZ) examined the responses of many single neurons in the brain of two rhesus monkeys while they attended to a stimulus without directly looking at it and made an eye-movement while maintaining attention on this stimulus. To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey’s brain and recorded the neurons’ electrical activity.

Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey’s brain known as area MT, the scientists were able to show that attentional enhancement indeed switches from the first set of neurons to the second set of neurons in a fast and saccade-synchronized manner. Attentional enhancement in the brain is therefore well-timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

“Our study shows how the primate brain is able to ideally keep paying attention to relevant objects even while making frequent eye-movements”, says Tao Yao, first author of the publication. It supports the idea that the visual attention system and the eye-movement system operate in a synchronized, well co-ordinated manner. “Our results answer several important questions about how the sensory and motor parts of the brain interact and co-ordinate with each other. Also, because co-ordinated sensorimotor function is known to be impaired in schizophrenia, visual neglect and other brain disorders, our results may help improve our understanding of these diseases”, Tao Yao comments on the findings.

Original publication

Tao Yao, Stefan Treue and B. Suresh Krishna: Saccade-synchronized rapid attention shifts in macaque visual cortical area MT. Nature Communications, doi 10.1038/s41467-018-03398-3


Contact

Dr. Dr. med. Suresh Krishna
Tel: +49 551 3851-354
E-mail: skrishna@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

Printable Images

Printable images are provided by the DPZ’s public relations department or may be downloaded from the photo database of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 93 research and infrastructure institutions of the Leibniz Association in Germany.

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4301 - Printable pictures
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4301 - Press release on DPZ website

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>