Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paints prevent fouling of ships’ hulls

11.06.2012
The colonisation of hulls by algae, barnacles, mussels and other organisms is a major problem for both pleasure boats and merchant tonnage.
In a joint project, researchers at the University of Gothenburg and Chalmers University of Technology, Sweden, have developed new environmentally-friendly and effective bottom paints to prevent this.

Fouling is a major problem, leading to higher fuel consumption and so increased air pollution. It can also cause the spread of alien species that do not belong in the local marine environment.

Effective biocides found
Researchers at the University of Gothenburg and Chalmers University of Technology have spent nine years developing new environmentally-friendly and effective antifouling paints through a joint research programme called Marine Paint.

The focus has been on a substance called medetomidine, which has proved highly effective against barnacles, considered to be the most problematic fouling organism.

To tackle other types of fouling as well (such as algae, mussels, sea squirts and moss animals), the researchers have developed a concept for producing optimised combinations of different antifouling agents, or biocides.
The idea behind these optimised blends is to combine many different biocides that are effective against different fouling organisms, and adjust the balance between them to eliminate all types of fouling.

To produce the recipes for these optimised blends, the researchers have also developed a model system where they weigh the effect of different biocides on different fouling organisms against their expected environmental risk. The blends are all equally effective but offer different levels of expected environmental risk.

Hi-tech paints
These optimised blends have been combined with hi-tech paint systems based on microcapsules – microscopic capsules made out of a polymer material which slowly release the biocides from the paint into the water.

Adult barnacles on a cliff.
Photo: University of Gothenburg


The larva of a barnacle, examining a surface.
Photo: University of Gothenburg

Field trials of painted test panels at the Sven Lovén Centre for Marine Sciences in Kristineberg have shown that the concept of optimised antifouling blends in bottom paints works very well.

Marine Paint’s research results for medetomidine have been passed to the commercial partner I-Tech AB to ensure that they are put into practice, and the product is now being marketed under the name Selektope.

Marine Paint has been hosting a conference in Gothenburg on 14-15 May 2012 and presentED its results and placeD them in a wider context, with speakers and participants representing universities, colleges, industry, authorities, shipping companies, leisure boat owners and other interested parties, primarily from Sweden and Europe.
Summaries of the workshop presentations will be made available on Marie Paint’s wbsite www.marinepaint.se

The Marine Paint research programme was funded by the Mistra Foundation for Strategic Environmental Research from 2003 to 2011.

For more information, please contact: Programme director Thomas Backhaus
Telephone: +46 (0)31 786 2734
E-mail: thomas.backhaus@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>