Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On our way to the bio-economy: Bayreuth researchers discover high-performance biocatalyst


In the bioeconomy, biotechnological processes are replacing processes that rely on fossil resources. Microorganisms and enzymes are being used in targeted fashion as biocatalysts for industrial production. Researchers at the University of Bayreuth have now discovered an enzyme that offers great advantages as a biocatalyst. It is eminently suited for the production of natural product-derived drugs that promise a broad spectrum of medical application. Conventional synthesis processes for these substances are very laborious. In the journal "ACS Catalysis", researchers from the team of Prof. Dr. Frank Hahn present their discovery.

Biotechnological production of natural products and drugs

Spatial structure of the enzyme AmbDH3.

Image: Frank Hahn

Prof. Dr. Frank Hahn, University of Bayreuth.

Image: UBT

Nature holds a wealth of substances that could be of great medical benefits for humans. Due to their complex structures, however, these natural products can often only be produced at great expense when using conventional chemical processes.

One promising approach to this problem is the use of biocatalysts, which often help to markedly simplify production. The new biocatalyst discovered by the Bayreuth researchers is the enzyme AmbDH3.

It can be used to produce ring-shaped building blocks of natural products, so-called tetrahydropyrans. They often cause the biological activity of natural products, and therefore play an important role in medical applications.

In their study, the Bayreuth scientists succeeded in proving that AmbDH3 can be used to produce the antibiotically active (–)-centrolobin. On the basis of this, the Bayreuth research team intends to tackle the synthesis of further, even more complex tetrahydropyran-containing natural products.

One example are the Bryostatins, which are of great interest in drug research due to their antiviral activity. They might even be suitable for the treatment of cancer or Alzheimer's disease.

A versatile and powerful biocatalyst

Tetrahydropyrans are ring-shaped molecules that belong to the chemical group of heterocycles. The research group of Prof. Dr. Frank Hahn at the University of Bayreuth shows, in its new study, that a variety of different heterocycles can be obtained with the help of the biocatalyst AmbDH3.

The new biocatalyst has the advantage of allowing the spatial structure of the resulting ring-shaped molecules to be precisely controlled. In addition, AmbDH3 is a very stable enzyme and suitable for the production of large quantities of a desired substance. Until now, no biocatalyst has been known to combine all of these properties.

The scientists discovered AmbDH3 while studying bacteria that use this enzyme to produce ambruticin. This is a potential drug candidate for treatment of fungal diseases.

On our way to a sustainable bioeconomy

"I expect future applications for the enzyme AmbDH3 primarily in the production of active pharmaceutical ingredients, but also in the synthesis of fine chemicals. Our research group is confident that we will be able to discover further enzymes related to AmbDH3, which will further expand the repertoire of these biocatalysts.

Our work has proven that biocatalysis can make a significant contribution to establishing a more natural resource-based economy. It thus contributes to solving central social challenges," says Hahn, who, together with his team at the University of Bayreuth, is conducting research into the drug potential of natural products, and the synthetic potential of biosynthetic enzymes.

Industrial (or “White”) biotechnology is indispensable in the development of a sustainable bio-economy. By allowing microorganisms or enzymes to take over the production of substances that were previously obtained by 'artificial' chemical synthesis processes, energy is conserved and significantly fewer toxic chemicals used.

The chemical and pharmaceutical industries are very interested in such gentle processes. "With new biocatalysts, areas that until recently were reserved for traditional chemical synthetic methodology can be opened up to the bio-economy. In future, it will be important to combine the advantages of both research and development approaches in a targeted way," Hahn explains.

Research Funding

The study now published in "Catalysis" was supported by the German Research Foundation (DFG) as part of an Emmy Noether Junior Research Group, by a Career Integration Grant from the European Union, and a doctoral scholarship from the German Federal Environmental Foundation (DBU).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Frank Hahn
Organic Chemistry
University of Bayreuth
Phone: +49 (0)921 55-3660


Tim Hollmann, Gesche Berkhan, Lisa Wagner, Kwang Hoon Sung, Simon Kolb, Hendrik Geise, Frank Hahn: Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catalysis (2020), doi: 10.1021/acscatal.9b05071

Christian Wißler | Universität Bayreuth
Further information:

More articles from Life Sciences:

nachricht Interorganellar signals regulate longevity
18.05.2020 | Max-Planck-Institut für Biologie des Alterns

nachricht Quantifying the impact of interventions
18.05.2020 | Max Planck Institute for Dynamics and Self-Organization

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

Im Focus: 'Hot and messy' entanglement of 15 trillion atoms

Quantum entanglement is a process by which microscopic objects like electrons or atoms lose their individuality to become better coordinated with each other. Entanglement is at the heart of quantum technologies that promise large advances in computing, communications and sensing, for example detecting gravitational waves.

Entangled states are famously fragile: in most cases even a tiny disturbance will undo the entanglement. For this reason, current quantum technologies take...

Im Focus: A new, highly sensitive chemical sensor uses protein nanowires

UMass Amherst team introduces high-performing 'green' electronic sensor

Writing in the journal NanoResearch, a team at the University of Massachusetts Amherst reports this week that they have developed bioelectronic ammonia gas...

Im Focus: Surgery Training with Robots and Virtual Reality

Joint press release from the University of Bremen and Chemnitz University of Technology

The insertion of hip implants places high demands on surgeons. To help young doctors practice this operation under realistic conditions, scientists from the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

Latest News

On our way to the bio-economy: Bayreuth researchers discover high-performance biocatalyst

19.05.2020 | Life Sciences

Unlocking the gate to the millisecond CT

19.05.2020 | Physics and Astronomy

A spreadable interlayer could make solid state batteries more stable

19.05.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>