Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Olfactory bulb glial cell transplant preserves muscles in paraplegic rats

25.09.2008
Researchers from the “Centro de Biología Molecular Severo Ochoa” (CSIC-UAM), Córdoba University and the “Instituto de Biomedicina de Valencia” (CSIC) have analysed the degree of preservation in the skeletal muscles of paraplegic rats treated with a transplant of Olfactory bulb glial cells (OBG).

Spinal chord injuries represent a serious and irreversible handicap that is sadly frequent in our society. Because of the permanent break in the nervous connections between the brain and the organs and muscles, such injuries impair their movement inducing atrophy and deterioration while they disturb organic functions.

The pioneering studies carried out by Santiago Ramón y Cajal established that while nerve cells from the peripheral nervous system (PNS) have the capacity to repair themselves, the same does not apply to adult brain cells and spinal cord cells from the central nervous system (CNS). The difference is not in the nerve cells themselves but in the cellular enviroment that gives them support - the glial cells. These cells are involved in the transmision of nerve impulses and produce myelin. Schwann cells (a variety of glial cell) in the peripheral nervous system (PNS) provide factors that contribute to the regeneration of the axons whereas the glia of the CNS do not have such a nurturing role. For this reason, one of the strategic experimental approaches for the regeneration of spinal chord neurons consists in altering their cellular enviroment by introducing cells that create a supportive environment for axon regeneration in the damaged area. The glial cells that surround the axons in the olfactory bulb (OBG) are a promising example because they promote axon regeneration in the CNS.

In an experiment using paraplegic rats, it was found that 8 months after a transplant treatment in a transected spinal chord using OBS, axon regeneration was taking place and sensorial and motor recovery was perceived in behavioural tests. The investigation recently published in the Journal of Physiology (London) [J Physiol 586.10 (2008) pp 2593–2610], with the collaboration of scientists from the “Centro de Biología Molecular Severo Ochoa” (CSIC-UAM), Córdoba University, and the “Instituto de Biomedicina de Valencia” (CSIC), has analysed for the first time the muscular characteristics of paraplegic animals treated with an OBG transplant and compared them with those of untreated paraplegic animals and healthy control animals.

The study exhibits a high correlation between the functional capability shown by the animals in behavioural tests and some biochemical parameters. The parameters measured differentiate the muscular characteristics of paraplegic and healthy animals and they established that animals treated with the transplant had more similar characteristics to the healthy animals than the untreated paraplegic animals. In spite of the global effect of OBG transplants, only 3 of the 9 treated animals (and none of the untreated) showed near normal muscle characteristics. This could imply that maintaining the muscular phenotype might rely on the interaction between the transplanted cells and other factors.

One the possible factors that affect the result could be the physical exercise to which the animals were subjected. This could be significant since it is well known that rehabilitation treatment aids regenerative therapies. Both voluntary and assisted exercise stimulates synaptic plasticity and the regenerative capabilities of neurons of the CNS as well as re-establishes adequate trophic factors. The role of the OBG in establishing a nurturing cellular environment for axon regeneration could induce adaptation in the local spinal circuits that favours the conservation of muscular properties and automatic contractions even while the damaged neural pathways are not fully recovered.

Oficina de Cultura Científica | alfa
Further information:
http://www.uam.es
http://jp.physoc.org/cgi/content/abstract/586/10/2593

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>