Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU Oregon National Primate Research Center develops new, safer method for making vaccines

30.05.2012
While vaccines are perhaps medicine's most important success story, there is always room for improvement. Researchers at Oregon Health & Science University's Oregon National Primate Research Center (ONPRC) appear to have done just that.

As explained in a newly published research paper, Mark Slifka, Ph.D., and colleagues have discovered a new method for creating vaccines that is thought to be safer and more effective than current approaches. The research results are published online in the journal Nature Medicine.

"Most vaccines have an outstanding safety record," explained Slifka. "It is important to keep in mind that no medical achievement has saved more lives than the simple act of vaccination. However, for many diseases, we have struggled to develop an effective vaccine. In other cases, vaccines may be protective, but come with rare but serious side effects. For instance, the live oral polio vaccine was very effective at stopping polio outbreaks and transmission, but was also responsible for eight to 10 cases of vaccine-associated polio in the United States each year.

This problem was solved in 2000 when the U.S. switched to a formaldehyde-fixed 'dead' form of the vaccine. Our goal is to make vaccines like these safer and potentially even more effective by pioneering an entirely new approach to vaccine development."

Slifka's approach is remarkable because it is the first to demonstrate that hydrogen peroxide can inactivate viruses for use as vaccines. Although hydrogen peroxide has long been known as an effective antiseptic and is often used to sterilize medical equipment, it was believed that it would be too damaging to be useful in vaccine development. It turns out that this previous notion was incorrect. In fact, peroxide may turn out to be one of the best new approaches to future vaccine design.

In the study published this week, Slifka's lab generated not one, but three vaccines.

"We wanted to demonstrate that this is truly a platform technology and not just a one-hit-wonder," explained Slifka. "For this reason, we chose three unrelated model systems and demonstrated protective vaccine-induced immunity in all three cases."

The three diseases targeted by these viruses are West Nile virus, Lymphocytic choriomeningitis virus (a relative of lassa fever virus, known to cause hemorrhagic fever in Africa) and vaccinia virus (widely known for its previous use in the smallpox vaccine.)

An Oregon-based biotech company, Najít Technologies, Inc., is hoping that these advances in vaccine technology will result not only in new vaccines but also new jobs in the Portland area.

"This new approach really gives a boost to an area of vaccine development that's been stagnant for some time," said Ian Amanna, Ph.D., associate vice president for research at Najít Technologies.

"Because of these advances, we've been increasing our workforce and putting together a group of very talented researchers. In partnership with OHSU, we're excited to have the opportunity to further develop this technology into commercial vaccines that can offer protection for at-risk individuals. These vaccines will not only be important to international travelers, but also to the people living in endemic regions. These places are often in developing countries with limited resources for preparing and testing life-saving vaccines and we are looking forward to the day that we can bring these new vaccines to the countries that need them the most."

Najít Technologies, founded by Slifka and colleagues using methods first discovered at OHSU, hopes to continue working together with academic institutions such as OHSU, ONPRC, and Washington University-St. Louis to create new and better vaccines for some of the world's biggest problems including West Nile virus, yellow fever and dengue hemorrhagic fever.

Grants from the National Institutes of Health and ONPRC supported the research.

Conflict of Interest Statement

OHSU and Dr. Slifka have a financial interest in Najit Technologies, Inc., a company that may have a commercial interest in the results of this research and technology. This potential individual and institutional conflict of interest has been reviewed and managed by OHSU.
About OHSU
Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer, OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state. OHSU is home to ONPRC, one of the eight National Primate Research Centers in the U.S.
About NTI
Najít Technologies, Inc. is a privately-held vaccine development company founded in 2004. The company is headquartered in Beaverton, OR. The Mission of the company is to develop safe and effective vaccines against infectious diseases of global importance. Some of the information presented here may contain projections or other forward-looking statements regarding the future. These statements are only predictions and are subject to risks and uncertainties that could cause results to differ from those expressed or implied statements.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

nachricht How are pollen distributed in the air?
18.07.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>