Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

News About Drug Delivery

30.10.2019

Nanocontainer for drugs can have their pitfalls: If they are too heavily loaded, they will only dissolve poorly. Why this happens is now reported by a Würzburg research group in "Angewandte Chemie".

Nanocapsules and other containers can transport drugs through a patient's body directly to the origin of the disease and release them there in a controlled manner.


As the loading with curcumin (yellow) increases, the dissolution rate of the containers made of polymeric micelles (blue) decreases.

Picture: Ann-Christin Pöppler

Such sophisticated systems are occasionally used in cancer therapy. Because they work very specifically, they have fewer side effects than drugs that are distributed throughout the entire organism.

This method is known in science as drug delivery. Chemistry professor Ann-Christin Pöppler from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, is convinced that this method still has great development potential.

She analyzes the molecular capsules that enclose drugs like a container and transport them to the site of action: "My group wants to understand in as much detail as possible how the container molecules and the active substances arrange and what properties result from this," she says.

Polymeric micelles as research objects

The junior professor is mainly investigating polymeric micelles. These consist of many chains of molecules, which assemble into spherical structures. Such micelles are already on the market as drug containers.

They are used in cancer therapies as well as in cosmetic products such as make-up remover lotions. When they come into contact with fat-soluble substances, they arrange themselves on their surface and at the end surround them like a coat of hair. This forms a container with a "water-loving" outer shell and a "fat-loving" core.

"Little is known about the molecular origin of the properties of these structures," says Pöppler. In the scientific journal Angewandte Chemie, the researcher and co-authors from JMU recently described an effect that is important for the design of future drug delivery systems: If increasing amounts of active ingredients are packed into the polymeric micelles, their dissolution suffers – the release of the active ingredients then becomes increasingly difficult.

Active ingredients glue the micelles together

The Würzburg research team found the reason for the decreasing solubility through a set of different experiments: As the container is loaded more and more, the active substances no longer settle exclusively in the core but also on the container surface. There they can almost glue the individual micelle hairs together. These molecular interactions reduce the solubility of the entire structure.

Next, the team hopes to find out whether the dissolution of the container can be improved by structural changes to the micelles. One of the goals of drug delivery is to ensure that a container absorbs as much active substance as possible and dissolves as well as possible in the body.

Polymer chemistry and pharmacy involved

Ann-Christin Pöppler cooperated with two other JMU groups in this work. The polymeric micelles were produced by Robert Luxenhofer, Professor of Polymer Functional Materials. The dissolution tests were carried out in the team of Professor Lorenz Meinel who heads the Chair of Pharmaceutical Technology and Biophysics.

The polymeric micelles used were compounds from the substance classes poly(2-oxazoline)s and poly(2-oxazine)s. Curcumin was used as model for an active substance because this ingredient of turmeric, a spice plant, is very easy to visualise spectroscopically. The structures of the containers loaded with different amounts of curcumin were determined by solid-state NMR spectroscopy and other analytical methods.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ann-Christin Pöppler, Institute of Organic Chemistry, University of Würzburg, T +49 931 31-85620, ann-christin.poeppler@uni-wuerzburg.de

Originalpublikation:

Loading-dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy. Ann-Christin Pöppler, Michael M. Lübow, Jonas Schlauersbach, Johannes Wiest, Lorenz Meinel, Robert Luxenhofer. Angewandte Chemie, DOI 10.1002/anie.201908914

Weitere Informationen:

https://www.chemie.uni-wuerzburg.de/oc/poeppler-group/home/ Website Prof. Pöppler

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Pinpointing Pollutants from Space
15.11.2019 | Max-Planck-Institut für Chemie

nachricht Chemists use light to build biologically active compounds
15.11.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>