Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of highly sensitive vision discovered in deep-sea fish

10.05.2019

The deep sea is home to fish species that can detect various wavelengths of light in near-total darkness. Unlike other vertebrates, they have several genes for the light-sensitive photopigment rhodopsin, which likely enables these fish to detect bioluminescent signals from light-emitting organs. The findings were published in the journal Science by an international team of researchers led by evolutionary biologists from the University of Basel.

Color vision in vertebrates is usually achieved through the interaction of various photopigments in the cone cells found in the retina. Each of these photopigments reacts to a certain wavelength of light. In humans, for example, these wavelengths are the red, green and blue range of the light spectrum.


The silver spinyfin (Diretmus argenteus) is the vertebrate with the highest number of opsin genes.

Alexandra Viertler, University of Basel


The lanternfish has bioluminescent organs and an increased number of rhodopsin genes.

Zuzana Musilová, Charles University, Prague

Color vision is only possible in daylight, however. In darkness, vertebrates detect the few available light particles with their light-sensitive rod cells, which contain only a single type of the photopigment rhodopsin – explaining why nearly all vertebrates are color-blind at night.

A genetic record for the silver spinyfin

An international team of researchers lead by Professor Walter Salzburger from the University of Basel recently analyzed more than 100 fish genomes, including those of fish living in deep-sea habitats. The zoologists discovered that certain deep-sea fish have expanded their repertoire of rhodopsin genes.

In the case of the silver spinyfin (Diretmus argenteus), they found no less than 38 copies of the rhodopsin gene, in addition to two other opsins of a different type. “This makes the darkness-dwelling silver spinyfin the vertebrate with the most photopigment genes by far,” explains Salzburger.

The deep-sea fish’s many different rhodopsin gene copies have each adapted to detect a certain wavelength of light, the researchers further reported. They demonstrated this through computer simulations and functional experiments on rhodopsin proteins regenerated in the lab.

The genes cover exactly the wavelength range of light “produced” by light-emitting organs of deep-sea organisms. This is known as bioluminescence, which is the ability of an organism to produce light on its own or with the help of other organisms. For example, anglerfish attract prey with their bioluminescent organs.

Detecting signals in the dark

The deep sea is the largest habitat on Earth and yet one of the least explored due to its inaccessibility. Many organisms have adapted to life in the near-total darkness of this inhospitable environment. For example, many fish have developed highly sensitive telescope eyes that allow them to detect the tiny amount of residual light that makes it to the depths of the ocean.

In vertebrates, 27 key spectral tuning sites have been identified in the protein for rhodopsin. These sites directly affect which wavelengths are detected. The researchers discovered that in the various gene copies of the deep-sea silver spinyfin, 24 of these positions exhibited mutations.

“It appears that deep-sea fish have developed this multiple rhodopsin-based vision several times independently of each other, and that this is specifically used to detect bioluminescent signals,” says Salzburger. He adds that this may give deep-sea fish an evolutionary advantage by allowing them to much better see potential prey or predators.

“In any case, our findings help redefine the current paradigm of vertebrate vision in terms of the role of rod photoreceptors,” the zoologists write. This presents yet another instance in which analyzing whole genomes led to new biological discoveries.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Walter Salzburger, University of Basel, Department of Environmental Sciences, Zoology, Tel. +41 61 207 03 03, Email: walter.salzburger@unibas.ch

Originalpublikation:

Zuzana Musilova, Fabio Cortesi, Michael Matschiner, Wayne I. L. Davies, Jagdish Suresh Patel, Sara M. Stieb, Fanny de Busserolles, Martin Malmstrøm, Ole K. Tørresen, Celeste J. Brown, Jessica K. Mountford, Reinhold Hanel, Deborah L. Stenkamp, Kjetill S. Jakobsen, Karen L. Carleton, Sissel Jentoft, Justin Marshall, Walter Salzburger
Vision using multiple distinct rod opsins in deep-sea fishes
Science (2019), doi: 10.1126/science.aav4632
https://science.sciencemag.org/lookup/doi/10.1126/science.aav4632

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Scientists discover how the molecule-sorting station in our cells is formed and maintained
18.11.2019 | Tokyo University of Science

nachricht Pesticides: Improved effect prediction of low toxicant concentrations
18.11.2019 | Helmholtz Centre for Environmental Research - UFZ

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>