Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows: Tropical corals reflect ocean acidification

21.05.2019

The limestone skeleton of tropical corals already shows changes in chemical composition due to the increase in CO2 in the atmosphere. This is shown by the study of an international team recently published in Nature Communications.

Through use of fossil fuels and deforestation, humans cause a steady increase in carbon dioxide (CO2) in the atmosphere. Oceans are regarded as CO2 reservoirs, absorbing more than 40% of this human-generated greenhouse gas.


Researchers take a drill core from a hard coral of the genus Porites in the reef off American Samoa. To protect the coral, the borehole is then filled with cement.

Photo: Braddock K. Linsley

When excess CO2 reacts with seawater to form carbonic acid, the pH decreases. This process is known as ocean acidification and affects calcifying marine organisms and their ability to build a fully functional calcareous skeleton.

Cool sea water in temperate latitudes absorbs more CO2 than seawater in the tropics. The consequences of ocean acidification are clearer here and can already be seen among others in the lime skeletons of biogenic calcifiers such as oysters, clams, or mussels

. For tropical hard corals, on the other hand, there are only few studies that have shown that they react to the more acidic environment. The work of an international research team now shows that they also reflect the changed water chemistry.

In the reefs of the South Pacific, researchers extracted cores from corals of the genus Porites, some over 1500 years old. These are massive and very resistant stone corals that form huge hemispheres and can grow to several meters in size.

"We see in them the future ‘winners’ in the fight for survival that climate change is forcing on corals," explains Henry Wu, geologist at the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen and one of the authors of the study.

There are indications of this, for example, in Papua New Guinea. There, volcanic CO2 flows out of the seabed and strongly acidifies the surrounding seawater. This has impacted the adjacent reef witnessing a reduction in coral diversity and recruitment through the domination of the massive corals of the genus Porites over the structurally complex corals.

The researchers took coral skeletal samples from drill cores and examined them for carbon isotopes. Stony corals grow between a few millimeters and several centimeters per year and form growth layers like trees. They build both types of carbon isotopes, 12C and 13C, into their limestone skeletons.

The investigations revealed a numerical ratio of the two isotopes which remained largely constant over many centuries and shows only slight natural fluctuations. It was not until the middle of the 20th century, with advancing industrialisation, that this numerical ratio changed considerably.

"We found a clearly increasing share of 12C from 1950 onwards", reports Henry Wu, "This is what we call ‘old’ carbon, because it is the carbon that is stored in the ground for millions of years and only gets into the atmosphere through the use of fossil fuels". How the changed isotope ratio affects a coral skeleton has not yet been researched. However, the 12C isotope is somewhat lighter than 13C and is incorporated more quickly into the lime skeleton.

With the isotopes the corals store further clues to their environment, which reach far into the past. "We have found that the carbon isotope ratios allow us to make much more accurate predictions about past sea level changes than was previously possible," says Henry Wu. "Understanding the past, on the other hand, helps to make predictions for the future”.

Wissenschaftliche Ansprechpartner:

Dr. Henry Wu
Leibniz Centre for Tropical Marine Research
Phone: +49 421 23800 - 130
Email: henry.wu@leibniz-zmt.de

Originalpublikation:

Braddock K. Linsley, Robert B. Dunbar, Emilie P. Dassié, Neil Tangri, Henry C. Wu, Logan D. Brenner, Gerard M. Wellington: Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nature Communications 10, 2019
https://www.nature.com/articles/s41467-019-10054-x

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>