Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the earliest events of seed germination

27.12.2019

Plant seeds can store their energy in a dry state for years, only to suddenly release it and germinate. How is energy in the seed made available? How can energy metabolism be started early and efficiently? An international team of researchers led by the University of Münster (Germany) has discovered that thiol redox switches play a key role in kick-starting the energy metabolism. The study has been published in "PNAS".

Plant seeds may strike the casual observer as unspectacular – but they have properties that are nothing short of superpowers. In a dry state they can store their energy for years and then suddenly release it for germination when environmental conditions are favourable.


Germinating mung bean seeds

Bettina Richter


Seed germination under the fluorescence microscope

Bettina Richter

One striking example is the “super bloom” in the Death Valley National Park, when seeds that have endured the dry and hot desert for decades suddenly germinate at rainfall followed by a rare and spectacular desert bloom several months later. Seeds conserve a fully formed embryo, which only continues growing when conditions are right for it to do so. This may be the case only years – or in more extreme cases even centuries – later.

Seed germination is controlled by several plant hormones, which are researched intensely. However, not much was known about the processes that need to take place to allow the hormones to function. How is energy in the seed made available? How can energy metabolism be started early and efficiently? An international team of researchers has now been looking into these questions.

Using a new type of fluorescent biosensors, the researchers observed, in living seed cells, both energy metabolism and the so-called redox metabolism, which relies in sulphur.

The researchers discovered that when the seeds came into contact with water, energy metabolism was established in a matter of minutes, and the plant cells’ “power stations” – known as mitochondria – activated their respiration. The researchers also found out which molecular switches are activated to enable energy to be released efficiently – with the so-called thiol-redox switches playing a central role.

“By looking into the very early processes of germination control, we can gain a better understanding of the mechanisms driving seed germination,” says Prof. Markus Schwarzländer from the University of Münster (Germany), who led the study.

“In future we could think about how such switches could be used in crop biotechnology.” The results of the study could be of relevance in farming, when seeds need to keep their germination vigour for as long as possible on the one hand, but should also germinate in synch and with minimal losses on the other hand. The study has been published in the journal "PNAS" (Proceedings of the National Academy of Sciences).

Background and method:

In order to be able to observe the activities taking place in the energy metabolism, the researchers visualized under the microscope adenosine triphosphate (ATP), the general currency for energy in the cell, and Nicotinamide adenine dinucleotide phosphate (NADPH), the electron energy, in the mitochondria. They compared seeds from thale cress: both dry seeds and seeds “imbibed” with water.

To find out whether the redox switches are important for kick-starting germination, the researchers deactivated specific proteins using genetic methods and then compared the reaction shown by the modified seeds with that of the unmodified ones. The researchers allowed the seeds to age artificially in the laboratory, and they saw that the seeds germinated much less actively if they lacked the relevant proteins.

The researchers’ next step involved so-called redox proteome analysis, i.e. they examined the relevant redox proteins in their entirety with the use of biochemical methods. For this purpose, they isolated active mitochondria and flash-froze them in order to be able to study this state directly where the process was taking place. The researchers then used mass spectrometry methods to identify several so-called cysteine-peptides which are important for resource efficiency in energy metabolism.

“The process could be likened to the traffic control system of a large city. Before the rush hour – i.e. germination – starts, which puts large quantities of metabolites ‘on the road’, the traffic light and routing systems need to be switched on in the morning; and here this is done by the thiol redox switches,” explains lead author Dr. Thomas Nietzel, who carried out most of the experiments as part of his PhD at the Institute of Crop Science and Resource Conservation at the University of Bonn and later as a postdoctoral researcher at the Institute of Biology and Biotechnology of Plants at the University of Münster.

Institutions involved and funding:

In addition to the University of Münster, other universities involved in the study were those of Greifswald, Bonn, Heidelberg, Aarhus (Denmark) and Lorraine (France) – as well as the Research Institute of Horticulture and Seeds in Beaucouzé (France) and the Max Planck Institute of Plant Breeding Research in Cologne. The study received financial support from the German Research Foundation (DFG).

Wissenschaftliche Ansprechpartner:

Prof. Markus Schwarzländer (University of Münster)
Phone: +49 251 83-24801
markus.schwarzlander@uni-muenster.de

Originalpublikation:

T. Nietzel et al. (2019): Redox-mediated Kick-Start of Mitochondrial Energy Metabolism drives Resource-efficient Seed Germination. PNAS; DOI: 10.1073/pnas.1910501117

Weitere Informationen:

https://www.pnas.org/content/early/2019/12/20/1910501117 Original publication in "PNAS"
https://www.uni-muenster.de/Biologie.IBBP/agschwarzlaender/index.html Research group Markus Schwarzländer at Münster University

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>