Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New blood vessel system discovered in bones


A previously unknown network of fine capillaries directly connecting the bone marrow with the circulation of the periosteum has been discovered by a team of scientists led by Prof. Matthias Gunzer and Dr. Anja Hasenberg from the Institute for Experimental Immunology and Imaging at the University Hospital of the University Duisburg-Essen (UDE) in Germany. The group was further supported by research institutes in Erlangen, Jena, Berlin, Dresden and Berne (Switzerland). Their results have now been published in the prestigious international journal “Nature Metabolism”.

Bones are very hard organs. Still they do possess a tight meshwork of blood vessels in their inner cavity, where the bone marrow is located, as well as on the bone surface, that is covered by the highly vascularized periosteum.

Feinste Blutgefäße verbinden das Knochenmark direkt mit der Knochenhaut

UDE/Matthias Gunzer, Annika Grüneboom

This is why e.g. bone fractures can bleed extensively. The same blood vessel system is also essential to transport blood- and immune cells from their place of origin, the bone marrow, to the outside.

„Like any other organ also bones need a closed circulatory loop (CCL) to function properly. This delivers fresh blood via arteries into the bone and transports used blood out via veins. How exactly the CCL of long bones functions was not totally clear until now.” says Dr. Anika Grüneboom from the University Hospital in Erlangen, first author of the study.

She performed her PhD thesis in the group of Prof. Gunzer, where she completed most of the work, that has now been published.

Sometimes more than 1,000 capillaries per bone

In the long bones of mice, the team observed and characterized a new type of capillary that perpendicularly to the long axis crosses the entire hard bone, which is termed corticalis. Hence the new blood vessels were named “trans cortical vessels” (TCV) and the team found hundreds to more than 1,000 of those in e.g. a mouse tibia.

The vessels could either be of arterial or venous origin. Surprisingly, the scientists could demonstrate, that the overwhelming majority of arterial and venous blood in long bones flows through the TCV system.

Prof. Gunzer: „Previous concepts described just a handful of arterial inlets and two venous exits on long bones of mice. This is obviously too oversimplified and does not correctly reflect the true natural situation. It is really unexpected being able to find a new and central anatomical structure that has not been described in any textbook in the 21st century.”

This discovery was enabled by a unique combination of cutting edge imaging approaches that have been established and honed over many years. “Several of those methods have been used for the first time to study blood flow in bones.” says Prof. Gunzer. „This applies e.g. to the so-called Light sheet microscopy and 7 Tesla ultra high field magnetic resonance imaging.”

Research requiring full physical involvement

Using these techniques, it could be shown that TCVs also exist in human bones, at least in some parts of these much thicker structures. Thereby the study required full – also physical - involvement from all participants. Prof. Gunzer himself was lying in the 7 Tesla machine of the Erwin L. Hahn Institute at the UDE for ~6h until all necessary high-quality scans of his lower leg were in the box.

Future work shall now investigate which role is played by TCVs in normal bone physiology as well as under disease conditions such as osteoporosis, rheumatoid arthritis or tumors, that metastasize into bones.

Redaktion: Milena Hänisch, Medical Faculty, Tel. 0201/723- 6274,

Wissenschaftliche Ansprechpartner:

Prof. Matthias Gunzer, Institute for Experimental Immunology and Imaging, Tel. 0201/18 3-6640,

Beate Kostka M.A. | Universität Duisburg-Essen
Further information:

More articles from Life Sciences:

nachricht Cell division in plants: How cell walls are assembled
20.02.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

Science & Research
Overview of more VideoLinks >>>