Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3D test system for breast cancer radiosensitizing drugs

23.06.2015

Radiation therapy is an important part of breast cancer treatment. Sometimes, however, tumor cells become increasingly resistant to radiation damage. Now, scientists of Helmholtz Zentrum München have developed a 3D microtissue-based screening system which, for the first time, enables them to test which chemotherapeutic drugs can resensitize breast cancer cells to radiation.

The team of researchers led by Dr. Nataša Anastasov, head of the research group ‘Personalized Radiation Therapy’ at the Institute of Radiation Biology, created multicellular three-dimensional spheroids containing a mix of breast cancer cells and connective tissue cells.


Picture: Hanging Drop System for the production of 3D micro tissue

Source: InSphero AG (2014)

As Anastasov explained, “In conventional cell culture, cell growth is two dimensional, which does not adequately reproduce the characteristics of a tumor in the living organism.” Using the new screening system, the scientists can treat the cancer cells both with various chemical compounds and with radiation to determine the effects – and that in 3D.

In their study the researchers collaborated closely with the ‘Assay Development and Screening Platform’ at Helmholtz Zentrum München and the Munich-based Sirion Biotech GmbH and the Swiss InSphero AG.

The trick: fluorescent cells in hanging drops

“In our system, up to 96 wells containing microtissue spheroids can be simultaneously monitored by a computer,” said co-author Dr. Ines Höfig, explaining the fundamental principle. “For this purpose, the 3D-microtissue spheroids were grown in a hanging drop culture on the underside of a special perforated plate. After a few days, these were transferred onto an assay plate.”

Her colleague Vanja Radulović added: “Because the breast tumor cells and the connective tissue cells have been labeled with different fluorescent markers, they fluoresce in different colors. A software program can thus capture precisely how each of the spheroids reacts to the treatment.”

To confirm their method, the scientists tested the properties of several drugs which are already used in tumor therapy. The drug vinblastine proved to be the most effective in combination with radiation. In the future, the researchers plan to expand their system by adding other components of the tumor environment such as stromal or immune cells in order to optimally simulate the situation in the patient.

Prof. Dr. Michael Atkinson, director of the Institute of Radiation Biology, views the findings of his colleagues with optimism: “For the first time a convenient 3D test for high throughput screening is available with which new drug compounds developed to resensitize tumor cells to radiation treatment can be tested. This will speed up future initiatives for drug development and will also enable the screening of established drugs in combination with radiation.”


Further Information

Background:
The rapid evolution of resistance to both conventional and small molecule therapies is a challenging problem in oncology. One approach to overcome resistance is to use combinatorial treatments that exploit their synergies. The combination of chemotherapy and radiation treatment is a potentially effective combinatorial procedure, although the optimal mix has not been identified. A major drawback in identifying potentially radiation-sensitizing active agents is the lack of high throughput screening (HTS) vehicles. These are needed to replace conventional clonogenic survival assays of radiation treatment as these are too time consuming to operate in a first-pass screening mode. Moreover, there are growing concerns that monolayer and monotypic cellular screening assays may not effectively reproduce the response of a three-dimensional solid tumor to pharmacological compounds.

Original Publication:
Anastasov, N. et al. (2015). A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment, BMC Cancer, DOI: 10.1186/s12885-015-1481-9

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The research of the Institute of Radiation Biology (ISB) focuses on understanding the effects of low dose radiation exposure and on studies to increase the effectiveness and specificity of tumor radiotherapy. The research program is carried out by four interlinked research groups. The ISB is part of the Department of Radiation Sciences (DRS).

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89-3187-3324 - Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Nataša Anastasov, Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-3798 - Fax: +49-(0)89-3187-3378 - E-Mail: natasa.anastasov@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/index.html - Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/isb/index.html - Website Institute of Radiation Biology
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Press Releases of the Helmholtz Zentrum München

Helmholtz Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Virus multiplication in 3D
13.12.2019 | Julius-Maximilians-Universität Würzburg

nachricht New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Dana-Farber Cancer Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Fraunhofer IPT and Ericsson launch 5G-Industry Campus Europe, Europe’s largest Industrial 5G Research Network

13.12.2019 | Information Technology

Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres

13.12.2019 | Materials Sciences

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>