Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3D test system for breast cancer radiosensitizing drugs

23.06.2015

Radiation therapy is an important part of breast cancer treatment. Sometimes, however, tumor cells become increasingly resistant to radiation damage. Now, scientists of Helmholtz Zentrum München have developed a 3D microtissue-based screening system which, for the first time, enables them to test which chemotherapeutic drugs can resensitize breast cancer cells to radiation.

The team of researchers led by Dr. Nataša Anastasov, head of the research group ‘Personalized Radiation Therapy’ at the Institute of Radiation Biology, created multicellular three-dimensional spheroids containing a mix of breast cancer cells and connective tissue cells.


Picture: Hanging Drop System for the production of 3D micro tissue

Source: InSphero AG (2014)

As Anastasov explained, “In conventional cell culture, cell growth is two dimensional, which does not adequately reproduce the characteristics of a tumor in the living organism.” Using the new screening system, the scientists can treat the cancer cells both with various chemical compounds and with radiation to determine the effects – and that in 3D.

In their study the researchers collaborated closely with the ‘Assay Development and Screening Platform’ at Helmholtz Zentrum München and the Munich-based Sirion Biotech GmbH and the Swiss InSphero AG.

The trick: fluorescent cells in hanging drops

“In our system, up to 96 wells containing microtissue spheroids can be simultaneously monitored by a computer,” said co-author Dr. Ines Höfig, explaining the fundamental principle. “For this purpose, the 3D-microtissue spheroids were grown in a hanging drop culture on the underside of a special perforated plate. After a few days, these were transferred onto an assay plate.”

Her colleague Vanja Radulović added: “Because the breast tumor cells and the connective tissue cells have been labeled with different fluorescent markers, they fluoresce in different colors. A software program can thus capture precisely how each of the spheroids reacts to the treatment.”

To confirm their method, the scientists tested the properties of several drugs which are already used in tumor therapy. The drug vinblastine proved to be the most effective in combination with radiation. In the future, the researchers plan to expand their system by adding other components of the tumor environment such as stromal or immune cells in order to optimally simulate the situation in the patient.

Prof. Dr. Michael Atkinson, director of the Institute of Radiation Biology, views the findings of his colleagues with optimism: “For the first time a convenient 3D test for high throughput screening is available with which new drug compounds developed to resensitize tumor cells to radiation treatment can be tested. This will speed up future initiatives for drug development and will also enable the screening of established drugs in combination with radiation.”


Further Information

Background:
The rapid evolution of resistance to both conventional and small molecule therapies is a challenging problem in oncology. One approach to overcome resistance is to use combinatorial treatments that exploit their synergies. The combination of chemotherapy and radiation treatment is a potentially effective combinatorial procedure, although the optimal mix has not been identified. A major drawback in identifying potentially radiation-sensitizing active agents is the lack of high throughput screening (HTS) vehicles. These are needed to replace conventional clonogenic survival assays of radiation treatment as these are too time consuming to operate in a first-pass screening mode. Moreover, there are growing concerns that monolayer and monotypic cellular screening assays may not effectively reproduce the response of a three-dimensional solid tumor to pharmacological compounds.

Original Publication:
Anastasov, N. et al. (2015). A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment, BMC Cancer, DOI: 10.1186/s12885-015-1481-9

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The research of the Institute of Radiation Biology (ISB) focuses on understanding the effects of low dose radiation exposure and on studies to increase the effectiveness and specificity of tumor radiotherapy. The research program is carried out by four interlinked research groups. The ISB is part of the Department of Radiation Sciences (DRS).

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89-3187-3324 - Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Nataša Anastasov, Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-3798 - Fax: +49-(0)89-3187-3378 - E-Mail: natasa.anastasov@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/index.html - Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/isb/index.html - Website Institute of Radiation Biology
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Press Releases of the Helmholtz Zentrum München

Helmholtz Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>