Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating with the sixth sense

27.04.2018

Desert ants use the Earth's magnetic field for orientation, a new study has found which was conducted by scientists of the University of Würzburg. This provides ants the cue to find their way back to the nest.

Desert ants (Cataglyphis) spend the first weeks of their life exclusively in their dark underground nest. For around four weeks, they nurse the queen and the brood, dig tunnels, build chambers or tidy up. At some point, they leave the nest to start their outdoor career, working as foragers until their death.


Desert ants (Cataglyphis) at the nest entrance.

Foto: Pauline Fleischmann


Looking for the nest entrance, Desert Ants use the geomagnetic field for orientation (black). This can be concluded from experiments, in which the geomagnetic field was artificially rotated (red).

Graphic: Current Biology

Pirouettes lead the way

Before an ant sets out to forage, it has to calibrate its navigational system, however. For this purpose, the insects exhibit a rather peculiar behaviour during two to three days: They perform so-called learning walks to explore the vicinity of the nest entrance and frequently turn about their vertical body axes while doing so.

High-speed video recordings show that the ants stop repeatedly during these pirouetting motions. What is special about the longest of these stopping phases is that at this moment the ants always look back precisely to the nest entrance, although they are unable to see the tiny hole in the ground.

Researchers from the Biocenter of the University of Würzburg have now made the surprising discovery that the desert ant uses the Earth's magnetic field as orientation cue during these calibration trips. This ability had been previously unknown for desert ants.

Publication in Current Biology

Pauline Fleischmann and Robin Grob, research assistants of Professor Wolfgang Rössler, who holds the Chair of Zoology II at the Biocentre of the University of Würzburg, conducted the tests in the summer of 2017. The scientists designed the experiment together with Professor Rüdiger Wehner from the Brain Research Institute of the University of Zurich and physicist Valentin Müller from the University of Würzburg. They present their research results in the current issue of the journal Current Biology.

"While they are foraging for food, desert ants venture several hundred metres away from their nest, pursuing a sinusoidal path that includes larger loops. Once they have found food, they return to the nest entrance in a straight line," Wolfgang Rössler describes the ants' astonishing navigational abilities. The researchers had known already that the ants rely on the position of the sun and landmarks as orientational cues and integrate this information with the steps travelled.

Experiments in Greece

Recent research results have shown, however, that the desert ant also looks back to the nest entrance during its learning walks in the absence of solar information or landscape cues. "This sparked the idea that the insects might navigate using the Earth's magnetic field as a cue, as some birds do," Pauline Fleischmann says.

To confirm their hypothesis, the researchers travelled to the south of Greece where Cataglyphis ants are native. They took a 1.5-m-high pair of Helmholtz coils with them. A defined current passed through the coils creates an almost homogeneous, precisely known magnetic field in between the coils. This enabled the researchers to study the behaviour of the desert ants during their learning walks in their natural habitat under controlled conditions.

A surprising outcome

The result was unambiguous: When the scientists changed the orientation of the magnetic field, the desert ants no longer looked towards the real nest entrance but towards a predictable new location – the fictive nest entrance.

"Their path integration provides them with a new vector to the nest based on the information of the magnetic field," Wolfgang Rössler explains. The scientists admit that they had been surprised by this finding. They say that although individual ant species are known to respond to changes in the magnetic field under certain conditions, the necessity and distinct influence on navigation in Cataglyphis ants was unexpected.

With this result the researchers have "opened a new door which raises a lot of further questions." One of them is: "When do desert ants use their magnetic sense?" It might well be that they already rely on it during the first weeks of their life which they spend underground. After all, a navigational aid can be quite useful in total darkness. But this is only a hypothesis at this point.

Interesting for neuroscience, computer science and robotics

The second question the scientists want to tackle is how and whether the ants switch between the different navigational cues - the position of the sun, landmarks and the magnetic field. Experienced foragers are already known to perform re-learning walks when they are forced to do so, for example by changing the environment at the nest entrance. It is unclear, however, whether they rely on magnetic field cues again in this case or whether they use their solar compass as during the foraging trips.

And ultimately, there is of course the overarching question of where the magnetic field sensor is located and how it works. According to Wolfgang Rössler, this question takes you deep into the field of orientational and navigational research in insects.

How does the comparably small ant brain manage to store navigational information on the position of the sun, the magnetic field and landmarks and integrate this information with distance data from their step counter? Rössler believes that this question goes far beyond the field of behavioural research and neurosciences and is of great interest for computer science and robotics, too.

The geomagnetic field is a compass cue in Cataglyphis ant navigation. Pauline Nikola Fleischmann, Robin Grob, Valentin Leander Müller, Rüdiger Wehner, Wolfgang Rössler. Current Biology (2018)

Contact

Prof. Dr. Wolfgang Rössler, Department of Zoology II, T: +49 931 31-84306, roessler@biozentrum.uni-wuerzburg.de

Dr. Pauline Fleischmann, Department of Zoology, T: +49 931 31-80347, pauline.fleischmann@uni-wuerzburg.de

Robin Grob, Department of Zoology, T: +49 931 31-89217, robin.grob@uni-wuerzburg.de

Weitere Informationen:

https://doi.org/10.1016/j.cub.2018.03.043 See the original paper

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht New contents: Neuronal Parkinson inclusions are different than expected
26.06.2019 | Universität Basel

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>