Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster University researchers develop new synthesis method for producing fluorinated piperidines

22.01.2019

A team of chemists at the University of Münster led by Prof. Frank Glorius have developed a new, simple synthetic method for producing fluorinated piperidines –which had previously been very difficult. These compounds play a major role in the development of new active ingredients. The results have just been published in the online edition of the journal “Nature Chemistry”.

Synthetic molecules are essential for many products in our lives: medicines, crop protection agents or special materials such as Teflon. These molecules have several components, which can be combined in a variety of ways, resulting in different properties. Both so-called piperidines and fluorinated groups are particularly important.


Pressure vessel (autoclave) for the hydrogenation of fluorinated pyridines. The reactions are carried out at a hydrogen pressure of 50 bar

Frank Glorius

Piperidines are small, ring-shaped chemical compounds. Since, as a result of their particular properties, fluorine atoms bring about dramatic changes in the properties of certain products –they are often integrated in pharmaceuticals. Hence around twenty percent of all medicines sold worldwide contain fluorine.

Up to now, however, combining fluorine atoms and piperidines has always been an extremely laborious process. Now, for the first time, chemists at the University of Münster have developed a new, easy to do synthesis method for producing such fluorine-bearing piperidines.

The study – written by Dr. Zackaria Nairoukh, Marco Wollenburg, Dr. Christoph Schlepphorst, Dr. Klaus Bergander and Prof. Frank Glorius – has just been published in the online edition of the Nature Chemistry journal.

In 2017, the Münster chemists had already published a study in journal “Science”, in which they presented a method by which cyclic, fluorinated molecules could be produced simply and quickly. The chemists’ new study follows on from this breakthrough.

“Up to now, it had been very difficult to combine piperidines and fluorine molecules,” explains Prof. Frank Glorius from the Institute of Organic Chemistry at Münster University, “and this was despite the fact that together they have outstanding chemical properties relevant to the production of active ingredients.”

Methodology

The method developed by Frank Glorius and his team runs in two consecutive steps – but in the same vessel: the starting molecules used are easily accessible, fluorinated pyridines, so-called “aromatic” compounds. These compounds are flat and have a particularly high stability – which makes them inert for many chemical processes.

In the method now published, the first step involves removing the aromaticity (“dearomatization”). This makes the second step possible, in which hydrogen atoms are transferred specifically to one side of the ring system (hydrogenation).

The resulting fluorinated piperidines are now – in contrast to the aromatic starting substances – no longer flat, and this can be helpful for the formation of complex three-dimensional structures. For both reactions, the chemists use a catalyst. “Catalyst” is the term applied by chemists and biochemists to enzymes or other molecules that speed up the stages of a reaction or, indeed, make them possible at all.

The results can now be used to produce new types of valuable components, previously unavailable, for research in the fields of pharmaceuticals and agrochemicals. “We hope that these components can soon be produced in large quantities,” says Frank Glorius.

The Münster University chemists want to use part of the grant of 2.5 million euros recently awarded by the European Research Council to work on a “renaissance” of the hydrogenation of aromatics, leading to the efficient production of such new types of molecule. “We’re going flat out in our efforts to try to understand more about the mechanism of catalysis, so that better catalysts can be developed and the potential of these reactions can be exploited to the full,” says Glorius.

The study was funded by the European Research Council (ERC Advanced Grant Agreement No. 788558), by the Hans Jensen Minerva Foundation (Zackaria Nairoukh) and by the German Research Foundation as part of IRTG 2017 (Marco Wollenburg).

Wissenschaftliche Ansprechpartner:

Prof. Frank Glorius
University of Münster - Institute of Organic Chemistry
Tel: +49 251 8333248
glorius@uni-muenster.de

Originalpublikation:

Zackaria Nairoukh, Marco Wollenburg, Christoph Schlepphorst, Klaus Bergander, Frank Glorius: The Formation of All-cis-(multi)fluorinated Piperidines by a Dearomatization-Hydrogenation Process. Nature Chemistry; published online 21 Jan 2019; DOI: 10.1038/s41557-018-0197-2

Weitere Informationen:

https://www.uni-muenster.de/news/view.php?cmdid=10042&lang=en

Dr. Kathrin Kottke | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>