Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular match-making: decoding ligand-receptor biochemistry

17.07.2015

Drugs like antihistamines or beta-blockers in human bodies bind to G-protein coupled receptors. Tiny little molecules that exist on the surface of our cells relay a signal from the outside to the inside of the cell, which finally evokes a reaction within. Humans have several hundred different receptors, many of which are vital for the functioning of their bodies.

Dr. Gáspár Jékely, independent research group leader at the Max Planck Institute for Developmental Biology in Tübingen, describes a new strategy to rapidly identify currently unknown receptors in the magazine Cell Report. Thereby his research group also sheds light on the evolutionary history of this widespread family of receptors.


Marine ragworm Platynereis dumerilii

Tom Pingel

With several hundred G-protein coupled receptors, so-called GPCRs, and many thousand potential ligands to test, it is difficult and time-consuming to find the right receptor-ligand combinations. The study focused on 87 Platynereis GPCRs and 126 different ligands, belonging to a specific class - the neuropeptides. With such large numbers of molecules, there were over 10,000 combinations to test.

“We had to come up with a clever strategy to get the work done in about a year rather than five years or more”, says Philipp Bauknecht, the PhD student who carried out the experiments. Much like in speed dating, every receptor should “meet” every neuropeptide in a very short amount of time. This was achieved by testing complex neuropeptide mixtures on each GPCR. A fluorescent protein would then report by emitting green light if there was a “match” between the GPCR and any of the ligands.

The researchers then continued only with the GPCRs that showed evidence of activation and tested combinations of mixtures containing only subsets of the neuropeptides. Combining the results from different mixtures allowed them to find the correct ligands for the GPCRs.

The GPCRs for which ligands had been identified were then used for evolutionary analysis. The researchers found related GPCRs from animals such as mollusks and insects, but also rats, mice and humans. For some of the GPCR families that were identified, this was the first example of what kind of ligand could activate them.

The team could show that some of the GPCR-ligand pairs are conserved across mammals, fish, insects and worms. These GPCR-ligand pairs were thus already present in the last common ancestor of ourselves and the ragworm Platynereis, an animal that lived about 550 million years ago.

A particularly interesting finding was the identification of a ligand for the invertebrate thyrotropin-releasing hormone receptor. As its name implies, the ligand for this receptor is the peptide thyrotropin-releasing hormone (TRH). This peptide occurs in vertebrates, where it functions in the control of metabolism. Invertebrates, however, were previously thought to lack this peptide while still having the receptor.

Through this study, the research group has identified a ligand for the invertebrate TRH receptor - a short neuropeptide that indeed seems to be related to vertebrate TRH. It was previously not recognized because it is so short and the few amino acids it is made up of changed during evolution. "Without having the receptor-ligand pair, we could not have solved this riddle", says Dr. Gáspár Jékely. The receptor is much longer, and conserved enough to show the relationships between vertebrate and invertebrate versions.

This new collection of GPCR-ligand pairs in the worm Platynereis will help other researchers in the field to identify similar pairs in other animals more easily. Furthermore, the strategy of using complex ligand mixtures is easily transferable to other species. Similar screens performed in other species could broaden our perspective of GPCR evolution even more.

Original Publication:
Philipp Bauknecht and Gáspár Jékely
Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs, Cell Reports 2015
DOI:http://dx.doi.org/10.1016/j.celrep.2015.06.052

Weitere Informationen:

http://dx.doi.org/10.1016/j.celrep.2015.06.052

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://eb.mpg.de

Further reports about: GPCR GPCRs Max-Planck-Institut Molecular Platynereis animals hormone ligands receptor species vertebrate

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>