Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microarray rapid test speeds up detection in case of Legionella pneumophila outbreak

22.03.2018

In an outbreak of Legionnaires' disease, finding the exact source as quickly as possible is essential to preventing further infections. To date, a detailed analysis takes days. Researchers at the Technical University of Munich have now developed a rapid test that achieves the same result in about 35 minutes.

Legionella are rod-shaped bacteria that can cause life-threatening pneumonia in humans. They multiply in warm water and can be dispersed into the air via cooling towers, evaporative recooling systems and hot water systems.


Sensor image indicating Legionella pneumophila serogroup 1, strain Bellingham-1

Image: Catharina Kober / TUM


First author Catharina Kober with the LegioTyper-chip

Photo: Jonas Bemetz / TUM

The most dangerous among the almost 50 species of Legionella is a subtype of Legionella pneumophila. It is responsible for 90 percent of all infections. When an outbreak occurs, the source of the germs must be identified as soon as possible to prevent further infections.

Similar to a paternity test, the origin of the outbreak is confirmed when the germs in the process water of a technical system exactly match those identified in the patient. However, often numerous systems must be tested in the process, and the requisite cultivation for the test takes around ten days.

Faster detection with antibodies

Meanwhile there is a rapid test for detecting the Legionella pathogen in the clinic. It identifies the compounds formed by Legionella in the urine of patients. "Unfortunately, this quick test serves only as a first indication and is not suitable for screening the water of technical systems," says PD Dr. Michael Seidel, head of the research group at the Chair of Analytical Chemistry and Water Chemistry of the Technical University of Munich.

The team of scientists thus developed a measuring chip in the context of the "LegioTyper" project funded by the German Federal Ministry of Education and Research. This chip not only detects the dangerous pathogen Legionella pneumophila but also identifies which of the approximately 20 subtypes is present.

Fast, inexpensive and versatile

The film-based measuring chip uses the microarray analysis platform MCR of the Munich company GWK GmbH. Using 20 different antibodies, the system provides a complete analysis within 34 minutes.

"Compared to previous measurements, the new method not only provides a huge speed advantage," says Michael Seidel, "but is also so cheap that we can use the chip in one-time applications."

The system can be deployed for environmental hygiene as well as clinical diagnostics. In combination with a second, DNA-based method, the system can even distinguish between dead and living Legionella pathogens. This allows the success of disinfection measures to be monitored. The project participants will present their system to the public for the first time at the Analytica 2018 trade fair in Munich (Hall 3, Booth 315).

Publication:

Wunderlich, A.; Torggler, C.; Elsaesser, D.; Lück, C.; Niessner, R.; Seidel, M.,
Rapid quantification method for Legionella pneumophila in surface water.
Analytical and Bioanalytical Chemistry 2016, 408(9), 2203-2213 – DOI: 10.1007/s00216-016-9362-x.

Kober, C.; Niessner, R.; Seidel, M.
Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosensors and Bioelectronics, 2018, 100, 49-55. https://doi.org/10.1016/j.bios.2017.08.053

More information:

The LegioTyper project is funded by the German Federal Ministry of Education and Research in the context of the "Civil Security – Protection against biological threats and pandemics" program. The antibodies were provided by the German Reference Laboratory for Legionella at the TU Dresden.

The microarray analysis platform MCR 3 of the Munich company GWK GmbH is also used in a test for antibiotic residues in milk developed at the same chair:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/31075/

Contact:

PD Dr. Michael Seidel
Technical University of Munich
Chair of Analytical Chemistry and Water Chemistry
Institute of Hydrochemistry
Marchioninistr. 17, 81377 München, Germany
Phone: +49 89 2180 78252 – E-mail: michael.seidel@ch.tum.de
Web: http://www.hydrochemistry.tum.de/home/

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34535/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>