Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice Change Their Appearance as a Result of Frequent Exposure to Humans

16.03.2018

Many tame domesticated animals have a different appearance compared to their relatives in the wild, for example white patches in their fur or shorter snouts. UZH researchers have now for the first time shown that wild house mice develop the same visible changes – without selection, as a result of exposure to humans alone.

Dogs, cows, sheep, horses, pigs, and birds – over the past 15,000 years, our ancestors domesticated dozens of wild animals to keep them as farm animals or pets. To make wild wolves evolve into tame dogs, the least aggressive animals, or most gentle ones, were selected for breeding. Tameness was therefore the key criterion for selection.


The white patches in the brown fur of the house mice are a sign of self-domestication.

Linda Heeb

Over time, it wasn’t only the animals’ behavior that changed, but their appearance as well – with the same changes emerging across various species. For example, domestic rabbits, dogs, and pigs all have white patches, floppy ears, smaller brains, and shorter snouts. In science, this suite of traits is referred to as the domestication syndrome.

Regular exposure to humans results in white patches in the fur

A team of researchers led by Anna Lindholm from the Department of Evolutionary Biology and Environmental Studies at UZH has now also observed this phenomenon in wild mice (Mus musculus domesticus) that live in a barn near Zurich. Within a decade, this population of mice developed two of the distinct phenotypic changes: white patches in their otherwise brown-colored fur as well as shorter snouts. “The mice gradually lost their fear and developed signs of domestication.

This happened without any human selection, solely as a result of being exposed to us regularly,” says Anna Lindholm. The evolutionary biologist has been studying the mice that live in the empty barn for about 15 years. These animals are regularly provided with food and water, and investigated by the researchers.

Experimental taming of wild foxes provides the key

Scientists’ knowledge about the domestication syndrome comes from a remarkable experiment that began in Siberia in 1959. Soviet geneticist Dmitry Belyaev tamed wild foxes and investigated their evolutionary changes. He selected the tamest animals from among every new generation. Over time, the foxes began to change their behavior: They not only tolerated people, but were outright friendly. At the same time, their appearance also changed: Their fur featured white patches, their snouts got shorter, their ears drooped, and their tails turned curly.

Neural crest stem cells provide link

It appears that a small group of stem cells in the early embryo – the neural crest – is responsible for these behavioral and physical changes that take place in parallel. The ear’s cartilage, the teeth’s dentine, the melanocytes responsible for the skin’s pigmentation, as well as the adrenal glands which produce stress hormones are all derived from these stem cells. The selection of less timid or aggressive animals results in smaller adrenal glands that are less active, and therefore leads to tamer animals. Changes in the color of fur and head size can thus be considered unintended side effects of domestication, as these traits can also be traced back to stem cells in the neural crest that were more passive in the early stages of development.

How wild mice became tame without selection

The observations of the study’s first author Madeleine Geiger increases the understanding of how house mice began to live in closer proximity to humans, attracted by their food, some 15,000 years ago. As a result of this proximity alone, the rodents got used to people and became tamer.

“This self-domestication resulted in the gradual changing of their appearance – incidentally and inadvertently,” says Geiger. Evolutionary biologists assume that the development from wild wolf to domestic dog also initially began without the active involvement of humans. Wolves that lived near humans became less timid and aggressive – the first step in becoming domesticated.

Literature:
Madeleine Geiger, Marcelo R. Sánchez-Villagra and Anna K. Lindholm. A longitudinal study of phenotypic changes in early domestication of house mice. Royal Society Open Science. March 7, 2018. DOI: 10.1098/rsos.172099

Contact:
PD Anna Lindholm, PhD
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 52 76
E-mail: anna.lindholm@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/Self-domestication-House-Mouse.ht...

Kurt Bodenmüller | Universität Zürich

Further reports about: Biology Evolutionary Mice adrenal glands domestication stem cells wild mice

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>