Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New membrane lipid measuring technique may help fight disease

11.10.2011
Could controlling cell-membrane fat play a key role in turning off disease?

Researchers at the University of Illinois at Chicago think so, and a biosensor they've created that measures membrane lipid levels may open up new pathways to disease treatment.

Wonhwa Cho, distinguished professor of chemistry, and his coworkers engineered a way to modify proteins to fluoresce and act as sensors for lipid levels.

Their findings are reported in Nature Chemistry, online on Oct. 9.

"Lipid molecules on cell membranes can act as switches that turn on or off protein-protein interactions affecting all cellular processes, including those associated with disease," says Cho. "While the exact mechanism is still unknown, our hypothesis is that lipid molecules serve sort of like a sliding switch."

Cho said once lipid concentrations reach a certain threshold, they trigger reactions, including disease-fighting immune responses. Quantifying lipid membrane concentration in a living cell and studying its location in real time can provide a powerful tool for understanding and developing new ways to combat a range of maladies from inflammation, cancer and diabetes to metabolic diseases.

"It's not just the presence of lipid, but the number of lipid molecules that are important for turning on and off biological activity," said Cho.

While visualizing lipid molecules with fluorescent proteins isn't new, Cho's technique allows quantification by using a hybrid protein molecule that fluoresces only when it binds specific lipids. His lab worked with a lipid known as PIP2 -- an important fat molecule involved in many cellular processes. Cho's sensor binds to PIP2 and gives a clear signal that can be quantified through a fluorescent microscope.

The result is the first successful quantification of membrane lipids in a living cell in real time.

"We had to engineer the protein in such a way to make it very stable, behave well, and specifically recognizes a particular lipid," Cho said. He has been working on the technique for about a decade, overcoming technical obstacles only about three years ago.

Cho hopes now to create a tool kit of biosensors to quantify most, if not all lipids.

"We'd like to be able to measure multiple lipids, simultaneously," he said. "It would give us a snapshot of all the processes being regulated by the different lipids inside a cell."

Other authors on the paper are postdoctoral researcher Youngdae Yoon, who developed the sensor; Park J. Lee, a doctoral student who developed microscope tools to enable the lipid quantification; and doctoral student Svetlana Kurilova, who worked on the protein cell delivery.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>