Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of tumor supressor gene essential to transforming benign nerve tumors into cancers

14.10.2009
Researchers at UCLA's Jonsson Comprehensive Cancer Center showed for the first time that the loss or decreased expression of the tumor suppressor gene PTEN plays a central role in the malignant transformation of benign nerve tumors called neurofibromas into a malignant and extremely deadly form of sarcoma.

The work, a collaboration between the Institute for Molecular Medicine, the Department of Molecular and Medical Pharmacology and the cancer center's Sarcoma Program, could lead to the development of new therapies that target the cell signaling pathway regulated by PTEN.

A novel mouse model of neurofibromatosis type 1 (NF1) developed at UCLA first illustrated the importance of PTEN tumor suppressor in malignant transformation and this finding was validated in human malignant peripheral nerve sheath tumors, the deadly sarcomas.

The study will be published this week in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"The loss of expression of PTEN in the human sarcomas we studied mirrored the loss of PTEN in mice, and we anticipate being able to target this pathway abnormality for the development of new methods of diagnosis and treatment" said Dr. Fritz Eilber, director of the Sarcoma Program and an assistant professor of surgical oncology. "Within the sarcoma world, malignant peripheral nerve sheath tumors are one of the most lethal sub-types, so this is a significant finding and may lead to new and more effective treatments."

NF1 is one of the most common genetically inherited disorders, with an incidence of about 1 in every 2,500 births, said, Dr. Hong Wu, associate director of the molecular medicine institute, a Jonsson Cancer Center researcher and senior author of the study.

"Patients with NF1 have an about 10 percent lifetime risk of developing this lethal sarcoma sub-type," Wu said.

The study also showed that Positron Emission Tomography (PET) scanning with the glucose analogue FDG - both in the mice and in humans - is a highly accurate way to distinguish between the benign tumors and the malignant ones, indicating that this non-invasive imaging technology is valuable in assessing therapeutic response to new treatments.

Wu created the mouse model with two of her graduate students, Caroline Gregorian and Jonathan Nakashima, co-first authors of this paper. It was created by altering two cell signaling pathways that are commonly activated in peripheral and central nervous system cancers, the RAS/RAF/MAPK & PTEN/P13K/AKT pathways, known to regulate cell proliferation, survival and differentiation.

"When we began to generate mouse models to mimic different human cancers, we usually did gene-based analysis to see the relevance of a specific gene in the development of the cancer," Wu said. "But we realize that sometimes targeting the cell signaling pathways that organize and instruct cells to function, both for normal functions of our body and also in abnormal ways in disease, are more important and informative than the individual gene"

The mouse model developed benign neurofibromas, but then progressed to the deadly sub-type of sarcoma. The neurofibromas had half the normal levels of PTEN and the sarcomas had a complete loss of PTEN. Since PTEN is an important factor in suppressing cells from becoming malignant, this could provide an explanation for the sequence of the normal cells transforming into benign neurofibromas that could then transform into cancer.

Wondering if this was also the case in people, Dr. Wu collaborated with Eilber and pathologist Dr. Sarah Dry, director of the Institute of Molecular Medicine's Pathway Pathology Center, and a multidisciplinary team of physician-scientists to determine if people with this sarcoma sub-type also had little or no PTEN.

"This type of collaboration is the hallmark of the work at the Jonsson Cancer Center and molecular medicine institute - translating discoveries in a basic science lab into discoveries in patients," Wu said.

Currently, there are no effective treatments to prevent the benign NF1 tumors from transforming into cancer. The genetically engineered mouse model will be used to screen drugs that may be able to target the signaling pathway regulated by PTEN, to block signals that instruct the cells to change from a benign state to a malignant one, providing treatment options for patients with the deadly form of cancer.

"I think these findings will help us provide a better diagnosis that can determine if the neurofibroma is becoming a malignant tumor or not," Eilber said. "But more importantly, the loss of the PTEN and its associated signaling pathways gives us targets for therapy and it may lay the foundation for treatment in other sarcomas as well."

Also involved in the research were Dr. Paul Mischel, Dr. Simin Liu, Dr. Phioanh Leia Nghiemphu, Dr. Greg Lawson, Dr. Michael Sofroniew and Dr. Michael Phelps, director of the molecular medicine institute and creator of the PET scanner

The study was funded by the United States Department of Health and Human Services, the National Cancer Institute, the National Institutes of Health, UCLA's Jonsson Comprehensive Cancer Center, the American Cancer Society, the Brain Tumor Society, the Henry Singleton Brain Cancer Research Program and the James S. McDonnell Foundation.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2009, the Jonsson Cancer Center was named among the top 12 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 consecutive years.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.cancer.ucla.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>