Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifestyle switching – Bacillus cereus is able to resist certain antibiotic therapies

28.12.2015

The pathogenic bacterium Bacillus cereus causes vomiting and diarrhoea as well as systemic and local infections such as sepsis or eye infections.

A team from the Vetmeduni Vienna has now reported for the first time that B. cereus, following contact with certain antibiotics, can switch into a special slowed-down mode. The bacteria then form small colony variants (SVCs) that are difficult to diagnose and almost impossible to treat with certain antibiotics. This newly discovered mechanism may provide an alternative explanation for antibiotic resistance. The results were published in the journal mBio.


Light micrograph of B. cereus in a small colony variant.

Photo: Markus Kranzler/Vetmeduni Vienna

The bacterium B. cereus had so far been considered to be exclusively endospore-forming. In response to harsh conditions, the bacteria form protective endospores enabling them to remain dormant for extended periods. When conditions are more favourable, the endospores reactivate to become fully functioning bacteria.

Elrike Frenzel, Markus Kranzler and Monika Ehling-Schulz of the Institute of Microbiology at the University of Veterinary Medicine Vienna have now shown for the first time that B. cereus has an alternative lifestyle in the form of so called small colony variants (SCVs). In B. cereus these SCVs form in response to exposure with aminoglycoside antibiotics. SCVs grow slower than the original form of B. cereus. They have an altered metabolism and are resistant to those antibiotics which triggered this state, namely aminoglycosides.

“The bacterium protects itself against the harmful effects of the antibiotics by forming these Small Colony Variants. But B. cereus is usually treated with exactly those antibiotics which induce the SCV state. If an antibiotic triggers the formation of SCVs, it also triggers resistance,” first author Frenzel explains.

Rethinking therapy and diagnostics

The mechanism discovered by Frenzel, Kranzler and Ehling-Schulz is of enormous significance in clinical practice. Traditional diagnostic methods are based on the identification of metabolic features of B. cereus. These tests will not detect SCVs, however, as they have a slower, altered metabolism. This may result in incorrect antibiotic therapies or even failed diagnoses. Study author Frenzel sees molecular-based diagnostics as the only way to diagnose this form of B. cereus.

Treating B. cereus infections using only aminoglycoside antibiotics could bear the risk of a prolonged infection. SCVs grow more slowly, but they still produce toxins that are harmful to the body. “In this case, a combination therapy with other antibiotic groups is advisable,” Frenzel recommends.

New molecular mechanism of SCV formation

One species of bacteria that has been known for years to be a multiresistant hospital pathogen and which poses a life-threatening risk for immunocompromised individuals in particular is Staphylococcus aureus. Those bacteria also form SCVs, but unlike B. cereus they are capable of reverting to its original state. For B. cereus, the adaptation to a small colony variant appears to be final. “We believe that the SCV formation in B. cereus functions differently than in S. aureus,” says study author Ehling-Schulz.

Environmental niche to cope with stress

“The ability to form SCVs appears to be of environmental significance for the bacteria,” Frenzel believes. “This alternative lifestyle allows the bacteria to avoid threatening stress factors such as antibiotic exposure. B. cereus are soil-dwelling, and other microorganism in the soil produce antibiotics. Here, too, the formation of SCVs would be an advantage for the bacteria.”

Service:
Der Artikel „The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure“ von Elrike Frenzel, Markus Kranzler, Timo D. Stark, Thomas Hofmann und Monika Ehling-Schulz wurde im Fachjournal mBio veröffentlicht. DOI:10.1128/mBio.01172-15
http://mbio.asm.org/content/6/6/e01172-15

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Monika Ehling-Schulz
Unit of Functional Microbiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 664 602576397
monika.ehling-schulz@vetmeduni.ac.at

Released by:
Heike Hochhauser
Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1151
heike.hochhauser@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Heike Hochhauser | idw - Informationsdienst Wissenschaft

Further reports about: Lifestyle Veterinary Medicine bacterium small colony variants

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>