Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019

Quantitative analysis of dense siloxane gels shows water can hinder catalytic activity

Researchers from Tokyo Metropolitan University have shown that the tunable hydrophobic nature of dense siloxane gels is strongly correlated with their catalytic activity, explicitly demonstrating how molecules with different hydrophobic nature at the molecular level interact differently with surfaces of differing hydrophobicity. This is also the first time a siloxane gel has been shown to be highly effective for the reaction of silyl ethers, commonly used as a protecting agent.


Simplified schematic showing how alkyl acetates with long tails cannot approach acidic sulfo sites (blue discs) in hydrophilic environments; however, they can approach hydrophobic environments with more methyl groups (small orange spheres), leading to a higher turnover frequency (TOF), a measure of how effective a catalyst is.

Credit: Hiroki Miura

The word hydrophobic comes from ancient Greek, "hydro" for water and "phobia" for fearing (opposite of hydrophilic). Thus, a hydrophobic material is one which repels water; household examples include coatings for non-stick frying pans and smartphones.

Hydrophobicity also plays a key role in nature, for example, how certain plants and animals harvest water from the atmosphere, and how long strands of DNA are efficiently packed into chromosomes. In recent years, it has also been revealed to be part of the function of acid catalysts, acidic materials which can speed up chemical reactions, widely used in the petrochemical industry.

Though it was widely known that more hydrophobicity led to better catalysis, it was not clear why this was the case, due to the heterogeneous porous structure of the most common catalysts.

Thus, a group of researchers led by Dr Hiroki Miura and Prof Tetsuya Shishido from Tokyo Metropolitan University studied the catalytic activity of a dense siloxane gel, a kind of silicone rubber, with acidic sulfo groups attached. Importantly, these gels can be covered with controlled amounts of both acid groups and hydrophobic methyl groups, enabling fine control of hydrophobicity. These gels are also not porous, presenting a surface which is covered in only two key groups, allowing for simpler but more accurate quantitation of surface environment.

The group studied catalysis of the hydrolysis (bond breakage with water) of alkyl acetates, commonly used for producing paints, fragrances, and even plastics; they found that acetates with longer, more hydrophobic tails in their molecular structure benefited from increased catalysis with a lower sulfo-to-methyl ratio. On the contrary, less hydrophobic molecules were catalysed less effectively due to less available sulfo groups. They clearly demonstrate how the affinity of water to catalysis sites can hinder the approach of different molecules; this may be leveraged to engineer both selectivity and increased activity.

Furthermore, the siloxane catalyst was applied to the deprotection of silyl ethers. Silyl ethers are protecting groups, attached to groups which need shielding from unwanted reactions. In order to make them available again, they must be readily deprotected. The group showed, for the first time, that siloxane gel catalysts are highly effective in deprotecting silyl ethers, a key reaction step in common reactions such as the construction of artificial nucleotides (or DNA). With more understanding of how molecular environment is tied to function, they hope that further chemical enhancements to these catalysts may open the way to new functions and applications.

###

This work was supported by a Program for Element Strategy Initiative for Catalysts & Batteries (ESICB), Platform for Technology and Industry, and Grants-in-Aid for Scientific Research (B) (Grant 17H03459) and Scientific Research on Innovative Areas (Grant 17H06443) commissioned by MEXT, Japan.

Media Contact

Go TOTSUKAWA
ragroup@jmj.tmu.ac.jp
81-426-772-759

 @TMU_PR

https://www.tmu.ac.jp/english/ 

Go TOTSUKAWA | EurekAlert!
Further information:
http://dx.doi.org/10.1021/jacs.8b11471

Further reports about: DNA Metropolitan acid activity catalytic catalytic activity hydrophobic hydrophobicity porous

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>