Keeping to time counter-intuitively

Now, the first experimental proof of this theory has been provided by an international research team led by molecular biologists and information scientists from the RIKEN Center for Developmental Biology in Kobe[1].

The demonstration of the feedback delay should lead to a better understanding of how cellular clocks function, and therefore how mammals adjust to the regular daily and seasonal changes in their environment. The work could also open the way to the development of treatments for circadian disorders, such as seasonal affective disorder, jet lag and even bipolar disorder.

Mammals not only show daily rhythms of waking and sleeping, but also body temperature, hormone secretion, and many other biological activities. The master cellular clocks that act as timers for these patterns are found in the suprachiasmatic nucleus of the brain. The molecular mechanism is built around a negative feedback system involving cryptochrome (Cry) genes, which code for proteins that repress their own activation by binding with the products of two other genes Bmal1 and Clock. The whole clock system is orchestrated by the interaction of these proteins with a complex array of promoters and enhancers, genetic sequences that regulate gene activity.

Within these clock-gene regulators are short sequences often known as clock-controlled elements. Different clock-controlled elements bind with the different proteins likely to be prevalent at different times of the day or night. The researchers carefully modified these sequences, and observed the impact on circadian rhythms of cells. They focused their studies in particular on the gene Cry1, and observed how the rhythm of its activity was affected by the modifications of clock-controlled elements within promoters and enhancers.

In addition to revealing a previously unknown clock-controlled element in the Cry1 promoter, the researchers also found that different combinations of clock-controlled elements led to different lengths of delay in the activation of Cry1. They demonstrated that this delay of Cry1 was required for the circadian clock to function (Fig. 1).

Based on these findings, they proposed a simple model of the mammalian circadian clock and now want to construct it using artificial components. “We think further experimental and theoretical analyses of this minimal circuit will lead to a deeper understanding of the mammalian circadian clock,” say team members Rikuhiro Yamada and Maki Ukai-Tadenuma.

The corresponding author for this highlight is based at the Laboratory for System Biology, RIKEN Center for Developmental Biology

Journal information

[1] Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C. & Ueda, H.R. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268–281(2011).

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors