Information Theory Helps Unravel DNA’s Genetic Code

Now researchers at the Indian Institute of Technology in Delhi have used techniques from information theory to identify DNA introns and exons an order of magnitude faster than previously developed methods.

The researchers were able to achieve this breakthrough in speed by looking at how electrical charges are distributed in the DNA nucleotide bases. This distribution, known as the dipole moment, affects the stability, solubility, melting point, and other physio-chemical properties of DNA that have been used in the past to distinguish exons and introns.

The research team computed the “superinformation,” or a measure of the randomness of the randomness, for the angles of the dipole moments in a sequence of nucleotides. For both double- and single-strand forms of DNA, the superinformation of the introns was significantly higher than for the exons. Scientists can use information about the coding and noncoding regions of DNA to better understand the human genome, potentially helping to predict how cancer and other diseases linked to DNA develop.

Article: “Dipole-entropy-based techniques for segmentation of introns and exons in DNA,” is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i8/p083701_s1

Authors: Nithya Ramakrishnan (1) and Ranjan Bose (1)

(1) Indian Institute of Technology, Delhi, India

Media Contact

Catherine Meyers Newswise Science News

More Information:

http://www.aip.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors