Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in Drosophila: Initiation of a EU research network for doctoral candidates

16.03.2012
Neurobiology division of the Institute of Zoology of Mainz University is now part of the EU-funded pan-European FLiACT initial training network on systemic neuroscience

Eight European research institutes, including Johannes Gutenberg University Mainz (JGU) in Germany, and three commercial partners have joined forces in an EU project to provide young academics with an outstanding research environment in the field of systemic neuroscience. The project by the name of FLiACT has been awarded four years of EU-funding through the Marie Curie Actions program.


The image taken from a high-speed video shows a fruit fly Drosophila of about 2.5 millimeters in body length engaged in climbing over a barely surmountable gap.
©: Strauss lab

The participating partners are working on various complementary aspects of neuroscience, ranging from molecular genetics to bioengineering. The nervous system of the fruit fly, Drosophila melanogaster, will be serving as the research focus. The objective of FLiACT is to create a unique training network in order to develop new research sectors and promote collaboration among research institutes. The neurobiology work group headed by Professor Dr. Roland Strauss at the Institute of Zoology at Mainz University is also part of the network.

Discovering how the brain functions represents one of the greatest challenges of current research. In order to understand cognitive processes in the brain, it is necessary to analyze its activity at various levels, beginning with its genetic building plan and covering biochemical processes and neural circuits as well as the characteristics of certain types of behavior. Over the last decades, the fruit fly Drosophila has become the model organism used by scientists to investigate the means by which sensory information is gathered, processed, and stored, and behavioral output is generated. Drosophila has already proven useful when it comes to the investigation of the genetic causes of neurodegenerative disorders, such as Alzheimer's disease. The human brain has a million times more neurons than that of Drosophila, but because both share common principles, it is possible to understand complex brain functions by studying the miniature fly brain. Thanks to FLiACT, twelve young European researchers now have the opportunity of embarking on a doctoral dissertation project that will look at cutting-edge aspects of neuroscience.

The participants will undertake a considerable part of their work in cooperation with the partner institutions, for example as visiting scientists. They will receive training in interdisciplinary workshops to enable them to acquire skills in innovative technologies in the areas of neurogenetics, neuroanatomy, neuroimaging and behavior analysis, while the commercial project partners will provide them with insight into such aspects as technology transfer and project management. There are also opportunities for cooperation with the Janelia Farm Research Campus, a research institute of the Howard Hughes Medical Institute in the United States of America.

The research group led by Professor Dr. Roland Strauss at Mainz University will be contributing to the project with its work on the biochemistry of learning and the underlying neuronal networks. The group studies the persistence of memory – from memories that are retained for a few seconds only to those that last an entire lifetime. "Improvements in motor skills acquired by repetitive training, for example, can enhance the climbing success of a fly for its entire lifetime," explains Strauss. But the insects are also capable of remembering the location of an object and of using it as a spatial orientation aid. Studies conducted in Mainz have shown that flies can remember the location of this object for several seconds after it has been removed from their environment. The researchers were able to pinpoint a small group of neurons that are responsible for this memory-based orientation ability. "The new EU network will help promote cooperation with other European research groups and thus lead to a better understanding of how the brain processes and retains information."

The FLiACT project (Systems neuroscience of Drosophila: from genes to circuits to behaviors) is an Initial Training Network (ITN) sponsored by the European Union. It is being coordinated by Dr. Matthieu Louis of the Center for Genomic Regulation in Barcelona, Spain.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15126.php
http://www.fliact.eu/
http://www.kowi.de/en/desktopdefault.aspx/tabid-153/490_read-258/

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>