Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in Drosophila: Initiation of a EU research network for doctoral candidates

16.03.2012
Neurobiology division of the Institute of Zoology of Mainz University is now part of the EU-funded pan-European FLiACT initial training network on systemic neuroscience

Eight European research institutes, including Johannes Gutenberg University Mainz (JGU) in Germany, and three commercial partners have joined forces in an EU project to provide young academics with an outstanding research environment in the field of systemic neuroscience. The project by the name of FLiACT has been awarded four years of EU-funding through the Marie Curie Actions program.


The image taken from a high-speed video shows a fruit fly Drosophila of about 2.5 millimeters in body length engaged in climbing over a barely surmountable gap.
©: Strauss lab

The participating partners are working on various complementary aspects of neuroscience, ranging from molecular genetics to bioengineering. The nervous system of the fruit fly, Drosophila melanogaster, will be serving as the research focus. The objective of FLiACT is to create a unique training network in order to develop new research sectors and promote collaboration among research institutes. The neurobiology work group headed by Professor Dr. Roland Strauss at the Institute of Zoology at Mainz University is also part of the network.

Discovering how the brain functions represents one of the greatest challenges of current research. In order to understand cognitive processes in the brain, it is necessary to analyze its activity at various levels, beginning with its genetic building plan and covering biochemical processes and neural circuits as well as the characteristics of certain types of behavior. Over the last decades, the fruit fly Drosophila has become the model organism used by scientists to investigate the means by which sensory information is gathered, processed, and stored, and behavioral output is generated. Drosophila has already proven useful when it comes to the investigation of the genetic causes of neurodegenerative disorders, such as Alzheimer's disease. The human brain has a million times more neurons than that of Drosophila, but because both share common principles, it is possible to understand complex brain functions by studying the miniature fly brain. Thanks to FLiACT, twelve young European researchers now have the opportunity of embarking on a doctoral dissertation project that will look at cutting-edge aspects of neuroscience.

The participants will undertake a considerable part of their work in cooperation with the partner institutions, for example as visiting scientists. They will receive training in interdisciplinary workshops to enable them to acquire skills in innovative technologies in the areas of neurogenetics, neuroanatomy, neuroimaging and behavior analysis, while the commercial project partners will provide them with insight into such aspects as technology transfer and project management. There are also opportunities for cooperation with the Janelia Farm Research Campus, a research institute of the Howard Hughes Medical Institute in the United States of America.

The research group led by Professor Dr. Roland Strauss at Mainz University will be contributing to the project with its work on the biochemistry of learning and the underlying neuronal networks. The group studies the persistence of memory – from memories that are retained for a few seconds only to those that last an entire lifetime. "Improvements in motor skills acquired by repetitive training, for example, can enhance the climbing success of a fly for its entire lifetime," explains Strauss. But the insects are also capable of remembering the location of an object and of using it as a spatial orientation aid. Studies conducted in Mainz have shown that flies can remember the location of this object for several seconds after it has been removed from their environment. The researchers were able to pinpoint a small group of neurons that are responsible for this memory-based orientation ability. "The new EU network will help promote cooperation with other European research groups and thus lead to a better understanding of how the brain processes and retains information."

The FLiACT project (Systems neuroscience of Drosophila: from genes to circuits to behaviors) is an Initial Training Network (ITN) sponsored by the European Union. It is being coordinated by Dr. Matthieu Louis of the Center for Genomic Regulation in Barcelona, Spain.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15126.php
http://www.fliact.eu/
http://www.kowi.de/en/desktopdefault.aspx/tabid-153/490_read-258/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>