Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased ozone concentrations reduce global food production

26.02.2019

The increased concentration of ozone in the atmosphere has reduced crop yields. That is shown in a worldwide study in which University of Gothenburg researchers and others have investigated how tropospheric ozone affects global food production.

The researchers have compiled and analysed worldwide data from field experiments with ozone and scaled up the effects to the global level. The results show that plant uptake of tropospheric (ground-level) ozone sharply reduces the size of harvests.


Wheat.

Photo: Håkan Pleijel.

The most important global crops – wheat, rice, maize and soybeans – are all sensitive to ozone, but ozone also seriously affects other crops. Ozone causes estimated global crop losses of 7 per cent for wheat and as much as 12 per cent for soybeans.

Comparable to parasitic infestations

Tropospheric ozone has a negative impact on crops comparable to parasitic infestations or extreme drought.

“Climate-related effects rightly attract quite a lot of attention, but our study shows that widespread air pollution on a large scale also has a significant effect on global food production,” says Håkan Pleijel, professor of environmental sciences at the University of Gothenburg.

The results also indicate that there are large differences among different regions of the world. Food production is most vulnerable in Asia, especially in China and India.

Traffic is the biggest culprit

Nitrogen oxides and volatile organic substances, such as methane or benzene, account for the current high levels of tropospheric ozone. Industries of various kinds are large sources of emissions, but the main source of pollution is traffic. This points to the importance of reducing traffic and thereby lowering the level of emissions. The climate would also benefit because emissions of ozone-forming substances and carbon dioxide go hand in hand.

“Unfortunately, we do not live in the best of times for reduced emissions. China and India, for example, have a high risk of increased emissions because many more people there are obtaining cars,” says Pleijel.

“Certainly there is a greater awareness today than a few decades ago, but if Asia follows the Western model, there is a risk the positive effects of better technology will be cancelled out by steadily rising consumption and traffic,” says Johan Uddling, professor of plant ecophysiology at the University of Gothenburg.

Strategies for improvement

The best strategy to reduce the problem of ground-level ozone is to strongly reduce the emissions of ozone forming substances. Since this is likely to take time, another strategy for reducing the impact of ozone involves developing more robust crops. A further approach is to change crop management approaches, such as planting or irrigating at the right time in relation to the highest ozone concentrations, thus avoiding excessive ozone uptake by the crops.

“For example, if farmers have good forecasts of ozone peaks, they can refrain from irrigating in connection with them. When plants have plenty of water, the stomata in their leaves are wide open and their uptake of ozone is especially large,” Uddling says.

Previous estimates of how tropospheric ozone affects food production have overestimated
the impact for some regions and underestimated it for others. For Sweden’s part, previous studies have tended to underestimate the negative effects of tropospheric ozone because we have a relatively humid climate.

For dry regions, the effects have been overestimated instead.

“Unlike previous global studies, this new study is based on the actual uptake of ozone rather than only the concentrations in the atmosphere. It is a big step forward,” says Pleijel.

Wissenschaftliche Ansprechpartner:

Håkan Pleijel, professor in the Department of Biology and Environmental Sciences; telephone: +46 (0)31-7862532, mobile: +46 (0)732-018913, e-mail: hakan.pleijel@bioenv.gu.se

Johan Uddling Fredin, professor in the Department of Biology and Environmental Sciences; telephone: +46 (0)31-7863757, mobile: +46 (0)70-3881357, e-mail: johan.uddling@bioenv.gu.se

Originalpublikation:

Global Change Biology published the study titled “Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance”.

Link to article: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14381

Weitere Informationen:

https://science.gu.se/english/News/News_detail//increased-ozone-concentrations-r...

Thomas Melin | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>