Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased ozone concentrations reduce global food production

26.02.2019

The increased concentration of ozone in the atmosphere has reduced crop yields. That is shown in a worldwide study in which University of Gothenburg researchers and others have investigated how tropospheric ozone affects global food production.

The researchers have compiled and analysed worldwide data from field experiments with ozone and scaled up the effects to the global level. The results show that plant uptake of tropospheric (ground-level) ozone sharply reduces the size of harvests.


Wheat.

Photo: Håkan Pleijel.

The most important global crops – wheat, rice, maize and soybeans – are all sensitive to ozone, but ozone also seriously affects other crops. Ozone causes estimated global crop losses of 7 per cent for wheat and as much as 12 per cent for soybeans.

Comparable to parasitic infestations

Tropospheric ozone has a negative impact on crops comparable to parasitic infestations or extreme drought.

“Climate-related effects rightly attract quite a lot of attention, but our study shows that widespread air pollution on a large scale also has a significant effect on global food production,” says Håkan Pleijel, professor of environmental sciences at the University of Gothenburg.

The results also indicate that there are large differences among different regions of the world. Food production is most vulnerable in Asia, especially in China and India.

Traffic is the biggest culprit

Nitrogen oxides and volatile organic substances, such as methane or benzene, account for the current high levels of tropospheric ozone. Industries of various kinds are large sources of emissions, but the main source of pollution is traffic. This points to the importance of reducing traffic and thereby lowering the level of emissions. The climate would also benefit because emissions of ozone-forming substances and carbon dioxide go hand in hand.

“Unfortunately, we do not live in the best of times for reduced emissions. China and India, for example, have a high risk of increased emissions because many more people there are obtaining cars,” says Pleijel.

“Certainly there is a greater awareness today than a few decades ago, but if Asia follows the Western model, there is a risk the positive effects of better technology will be cancelled out by steadily rising consumption and traffic,” says Johan Uddling, professor of plant ecophysiology at the University of Gothenburg.

Strategies for improvement

The best strategy to reduce the problem of ground-level ozone is to strongly reduce the emissions of ozone forming substances. Since this is likely to take time, another strategy for reducing the impact of ozone involves developing more robust crops. A further approach is to change crop management approaches, such as planting or irrigating at the right time in relation to the highest ozone concentrations, thus avoiding excessive ozone uptake by the crops.

“For example, if farmers have good forecasts of ozone peaks, they can refrain from irrigating in connection with them. When plants have plenty of water, the stomata in their leaves are wide open and their uptake of ozone is especially large,” Uddling says.

Previous estimates of how tropospheric ozone affects food production have overestimated
the impact for some regions and underestimated it for others. For Sweden’s part, previous studies have tended to underestimate the negative effects of tropospheric ozone because we have a relatively humid climate.

For dry regions, the effects have been overestimated instead.

“Unlike previous global studies, this new study is based on the actual uptake of ozone rather than only the concentrations in the atmosphere. It is a big step forward,” says Pleijel.

Wissenschaftliche Ansprechpartner:

Håkan Pleijel, professor in the Department of Biology and Environmental Sciences; telephone: +46 (0)31-7862532, mobile: +46 (0)732-018913, e-mail: hakan.pleijel@bioenv.gu.se

Johan Uddling Fredin, professor in the Department of Biology and Environmental Sciences; telephone: +46 (0)31-7863757, mobile: +46 (0)70-3881357, e-mail: johan.uddling@bioenv.gu.se

Originalpublikation:

Global Change Biology published the study titled “Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance”.

Link to article: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14381

Weitere Informationen:

https://science.gu.se/english/News/News_detail//increased-ozone-concentrations-r...

Thomas Melin | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>