Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incentive to Move

23.01.2018

A researcher from the University of Freiburg demonstrates how single-cell archaea determine what direction to swim

The biologist Dr. Tessa Quax has identified the structure of a central protein used by archaea to determine the direction to swim. Archaea are single-cell life forms without a nucleus. She also studied which molecular mechanisms are involved in the transmission of signals from the archaea’s environment to its motility structure.


Archaea are unicellular lifeforms without a cell nucleus – like the far better researched bacteria.

Source: Sonja-Verena Albers

Quax, who is a researcher in the lab of Prof. Dr. Sonja-Verena Albers at the Institute of Biology II of the University of Freiburg, has published her research in the scientific journal Proceedings of the National Academy of Sciences of the USA.

Archaea represent one of the three domains of life, along with bacteria and eukaryotes, the latter of which are organisms that have a nucleus as well as organelles. Archaea are the direct ancestors of eukaryotes, but are similar to bacteria in structure and organization.

They thus represent a very important link in the evolution theory. Archaea can adapt to extreme living conditions, such as hot sulfur springs or extremely salty lakes, and they can also be found in the oceans and in our intestines.

Microorganisms are dependent on being able to move actively: If their living conditions worsen, they are able to move to somewhere more favorable. Like bacteria, archaea are able to sense environmental stimuli and to respond by making a directed movement, called chemotaxis. For this purpose, during evolution they have developed a unique motility structure that is unlike that of bacteria and eukaryotes. Quax is investigating how outer stimuli are transferred via the chemotaxis system to the motility structure.

The organelle responsible for movement in bacteria, the flagellum, has been studied in detail for more than 30 years. The flagellum consists of as many as 50 proteins, which are assembled according to a predetermined order. The result is a whip-like structure (hence its Latin name) of protein threads that functions like a propeller.

Anchored to the cell wall and equipped with an “engine” at its tip, it can rotate, which is how the bacteria swims. Until recently, it was believed that archaea also use flagella to move. However, the team in Albers’s lab demonstrated that there are significant structural differences in the motility organelles of bacteria and archaea, and that the archaea's organelle should be renamed "archaellum."

Tessa Quax and her collaborators have also demonstrated that the central chemotaxis protein in archaea fits exactly to the archaeal motility structure. This means that the structural makeup of this protein is different between archaea and bacteria, although it fulfills the same function in both. This also corresponds with the observation that bacteria and archaea have different motility structures. This research thus offers insight into why archaea are able to successfully colonize new habitats.

Original publication:
Tessa E. F. Quax, Florian Altegoer, Fernando Rossi, Zhengqun Li, Marta Rodriguez-Franco, Florian Kraus, Gert Bange, and Sonja-Verena Albers:
Structure and function of the archaeal response regulator CheY. In: PNAS 2018. www.pnas.org/content/early/2018/01/19/1716661115

Caption:
Archaea are unicellular lifeforms without a cell nucleus – like the far better researched bacteria.
Source: Sonja-Verena Albers

Contact:
Dr. Tessa Quax
University of Freiburg
Institute of Biology II – Microbiology
Phone: +49 (0)761 / 203 - 2631
E-Mail: tessa.quax@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/incentive-to-move?set_l...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>