Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the power plants of the cell get shaped

11.09.2015

HZI scientists develop model for dynamic mitochondrial networks

Mitochondria are the power plants of cells. They control the production of energy and initiate various central cellular processes. If they become non-functional, this can cause or favour a number of diseases. These diseases are mainly of a neurological or muscular type, but include ageing processes as well.


Cytoskeleton (grey lines) affects fusion of mitochondria. By this it shapes their network and simultaneously separates them into peripheral dispersed fraction (blue) and central condensed ones (red)

© HZI / Sukhorukov

Systems biologists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig used a new mathematical model to describe which mechanisms are involved in the formation and maintenance of the dynamic mitochondrial networks in cells. The scientists published their results in "Scientific Reports".

One special feature of mitochondria is their pronounced dynamic behaviour inside the cell. They form a network that changes on a time scale of minutes through fission and fusion with other mitochondria again. Their special structure has a significant influence on how effectively they can supply energy:

Fibrous network structures produce a large amount of energy, whereas smaller fragments are less effective. "These processes play a role in cell ageing as well. Over-stressed or damaged mitochondria get fragmented and are then subjected to disposal," says Valerii Sukhorukov, who is a scientist at the Systems Immunology department at the HZI and the principal author of the study.

But how does the dynamic balance between the small fragments and the effective fibres of mitochondria get established? This was the central question addressed by the researchers. "Mechanisms of this type cannot be studied by biochemical analyses alone. This requires model-based simulations on a computer that explain the dynamic changes in the cell very well," says Prof Michael Meyer-Hermann, who directs the Systems Immunology department.

For this purpose, the scientists developed an initial mathematical model that is based on the different lengths of the mitochondrial fragments in linear or branched arrangement. The central result of the study is that an exact description of the mitochondria in the cell becomes possible only if the random motions of mitochondria along the fibres of the cellular skeleton, called microtubules, are taken into account.

This resulted in a so-called graph model that is based on the density of the microtubules and their intersections within the cell. The model describes all forms of mitochondria that have been found in experiments thus far and it also yields explanations for events that were understood incompletely thus far.

Sukhorukov and his colleagues would like to use the new mathematical model in the future to analyse the quality control of the fragmented mitochondria and to understand how cells control or remedy damage to their mitochondria. "This is very important to understand how cells control their energy balance despite the accumulation of damage with advancing age. This would allow us to draw conclusions about certain genetics-related diseases such as Parkinson's and ageing processes in the immune system," says Sukhorukov.

Original publication:
Valerii M. Sukhorukov, Michael Meyer-Hermann. Structural Heterogeneity of the Mitochondria Induced by the Microtubule Cytoskeleton.Scientific Reports. 2015 Sep 11. 5:13924. DOI: 10.1038/srep13924

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/how_the_po... - This press release at helmholtz-hzi.de
http://dx.doi.org/10.1038/srep13924 - Link to the original publication

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Yin and Yang during synapse maturation in young brains
20.02.2019 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Cell division in plants: How cell walls are assembled
20.02.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Novel coating enables hip implants to grow in better and prevents aseptic inflammation

20.02.2019 | Medical Engineering

Yin and Yang during synapse maturation in young brains

20.02.2019 | Life Sciences

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>