Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the power plants of the cell get shaped

11.09.2015

HZI scientists develop model for dynamic mitochondrial networks

Mitochondria are the power plants of cells. They control the production of energy and initiate various central cellular processes. If they become non-functional, this can cause or favour a number of diseases. These diseases are mainly of a neurological or muscular type, but include ageing processes as well.


Cytoskeleton (grey lines) affects fusion of mitochondria. By this it shapes their network and simultaneously separates them into peripheral dispersed fraction (blue) and central condensed ones (red)

© HZI / Sukhorukov

Systems biologists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig used a new mathematical model to describe which mechanisms are involved in the formation and maintenance of the dynamic mitochondrial networks in cells. The scientists published their results in "Scientific Reports".

One special feature of mitochondria is their pronounced dynamic behaviour inside the cell. They form a network that changes on a time scale of minutes through fission and fusion with other mitochondria again. Their special structure has a significant influence on how effectively they can supply energy:

Fibrous network structures produce a large amount of energy, whereas smaller fragments are less effective. "These processes play a role in cell ageing as well. Over-stressed or damaged mitochondria get fragmented and are then subjected to disposal," says Valerii Sukhorukov, who is a scientist at the Systems Immunology department at the HZI and the principal author of the study.

But how does the dynamic balance between the small fragments and the effective fibres of mitochondria get established? This was the central question addressed by the researchers. "Mechanisms of this type cannot be studied by biochemical analyses alone. This requires model-based simulations on a computer that explain the dynamic changes in the cell very well," says Prof Michael Meyer-Hermann, who directs the Systems Immunology department.

For this purpose, the scientists developed an initial mathematical model that is based on the different lengths of the mitochondrial fragments in linear or branched arrangement. The central result of the study is that an exact description of the mitochondria in the cell becomes possible only if the random motions of mitochondria along the fibres of the cellular skeleton, called microtubules, are taken into account.

This resulted in a so-called graph model that is based on the density of the microtubules and their intersections within the cell. The model describes all forms of mitochondria that have been found in experiments thus far and it also yields explanations for events that were understood incompletely thus far.

Sukhorukov and his colleagues would like to use the new mathematical model in the future to analyse the quality control of the fragmented mitochondria and to understand how cells control or remedy damage to their mitochondria. "This is very important to understand how cells control their energy balance despite the accumulation of damage with advancing age. This would allow us to draw conclusions about certain genetics-related diseases such as Parkinson's and ageing processes in the immune system," says Sukhorukov.

Original publication:
Valerii M. Sukhorukov, Michael Meyer-Hermann. Structural Heterogeneity of the Mitochondria Induced by the Microtubule Cytoskeleton.Scientific Reports. 2015 Sep 11. 5:13924. DOI: 10.1038/srep13924

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/how_the_po... - This press release at helmholtz-hzi.de
http://dx.doi.org/10.1038/srep13924 - Link to the original publication

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>