Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the “Biological Spark Plug” in Biomolecular Motors Works

04.08.2014

Heidelberg researchers simulate processes that trigger muscle movement

Using high-performance computers and quantum mechanical methods, researchers at Heidelberg University have simulated processes that reveal how the “biological spark plug” works in the biomolecular motors of cells. Under the direction of Dr. Stefan Fischer, the investigations focused on the myosin protein, which, among other things, is responsible for muscle movement.

The researchers’ extensive simulations show how the release of energy is initiated in this complex motor. The results of the research conducted at the Interdisciplinary Center for Scientific Computing were published in the journal PNAS.

Biomolecular motors are protein molecules responsible for mechanical movement in cells. These smallest of known motors use the molecule adenosine triphosphate (ATP) as fuel, which all living organisms use as a source of energy for processes that require it. In order to understand how these cell motors use ATP to function, they can be compared to an automobile engine, in which energy is released by burning petrol.

Because petrol does not ignite by itself, energy must be applied to initiate the combustion reaction. This job is done by the spark plug. Energy is not released until the heat energy of the spark is applied to overcome the energy barrier of petrol combustion. According to Stefan Fischer, there are a number of parallels to biomolecular motors. The ATP molecule is stable and like petrol does not release its energy spontaneously. Whereas ATP splits rather than burns, there is also an energy barrier that must be crossed to trigger that splitting, known as hydrolysis.

Dr. Fischer’s research team studied exactly how the trigger mechanism for energy release works in biomolecular motors. “We wanted to find out how the energy stored in the ATP gets released so selectively and precisely timed,” explains the Heidelberg researcher, who heads the Biological Macromolecules working group at the Interdisciplinary Center for Scientific Computing (IWR).

The scientists launched their study of the “biological spark plug” using the biomolecular motor myosin. Myosin is a family of motor proteins that uses ATP, for example to drive muscle movement. The ATP is bound in a sort of “pocket” in the protein. The pocket lowers the energy barrier for splitting the ATP – this process of lowering is known as catalysis – and ensures that the desired chemical reaction ensues and ultimately energy is released. The “catalytic pocket” is the biological equivalent of the spark plug in the combustion engine, according to Dr. Fischer.

The existence of this “biological spark plug” has been known for more than 50 years, but researchers have never been able to fully explain how it works, as Stefan Fischer emphasises: “The reaction takes place in about a trillionth of a second, pushing experimental methods to their limits. This event could not be studied exactly until the computer-assisted methods of scientific computing were applied.”

The scientists first had to identify which of the 6,000 atoms of myosin were essential for catalysis. After comprehensive simulations lasting several years, the researchers identified the role of approximately 200 relevant atoms. Because both the myosin atoms and ATP atoms must move during ATP hydrolysis, the possibilities for movement in three-dimensional space are countless – though only one path leads to the lowest energy barrier. “We had to calculate the paths of all approximately 200 atoms in three dimensions; altogether a problem in 600 dimensions,” says Dr. Fischer.

For their complex calculations, the scientists combined the scientific methods from quantum mechanics with high-performance computers. This allowed them to clarify how the interactions between ATP and myosin are organised in order to lower the energy barrier for splitting ATP. Stefan Fischer explains that the electrostatic charges on the protein atoms are positioned around the ATP in such a way that they modify the electron density of this molecule, making it easier for the ATP fuel to split. “This way we could precisely quantify how much every myosin atom relevant in this process contributed to lowering the energy barrier. Based on these findings we succeeded in clearly formulating the protein’s catalytic strategy.”

The biological spark plug mechanism described by the IWR researchers is not only found in cell motors, but is probably also used in all other protein molecules that use ATP as an energy source, says Dr. Fischer. “Because ATP is the fundamental energy currency of cells, almost all biochemical processes in the body are concerned. In terms of a practical application, our findings may be able to help research on new medications for treating cardiac muscle diseases. Our discoveries may also spur new approaches to treating diseases in which ATP splitting is a part of the biochemistry of the pathological system.”

Original publication:
Farooq Ahmad Kiani and Stefan Fischer: Catalytic Strategy Used By The Myosin Motor To Hydrolyze ATP. PNAS (published online 8 July 8 2014), doi:10.1073/pnas.1401862111

Internet information:
http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer

Contact:
Dr. Stefan Fischer
Interdisciplinary Center for Scientific Computing
Phone: +49 6221 54-8858
stefan.fischer@iwr.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: ATP Biomolecular Computing mechanical methods motors movement petrol processes

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>