Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants cope with iron deficiency

01.02.2019

Botany: Publication in Developmental Cell

Research groups from Heinrich Heine University Düsseldorf (HHU) and the University of Münster (WWU) have discovered a new switch that plants use to control their responses to iron deficiency. The findings from their research on the model plant Arabidopsis thaliana is published today in the journal Developmental Cell.


Plants adapt the iron acquisition in their roots to their current requirements. Iron deficiency triggers calcium signals. This information is passed on, activating the effector protein FIT.

HHU / Tzvetina Brumbarova

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health.

Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly.

Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant’s iron requirements vary throughout its development depending on external circumstances.

Because plants are sessile, they cannot escape their respective situation. Consequently, they have evolved strategies to recognise changing environmental conditions at an early stage and to adapt to these changes.

Particularly in view of climate change, understanding the processes that plants use to adjust to variations in food supply when environmental factors become unpredictable is also of major importance to the agricultural sector and its collaborating research partners in their endeavours to breed new varieties of high-yield crop plants.

Iron regulation is an important model system in plant biology for understanding how cellular regulation processes impact on each other and the related signalling paths. Researchers at HHU under the leadership of Prof. Petra Bauer and her associate Dr. Tzvetina Brumbarova and at WWU under the leadership of Prof. Jörg Kudla and Prof. Uwe Karst have examined the special mechanisms and dynamics of a protein named “FIT” in iron uptake and have discovered cellular information processes that impact on FIT.

The FIT protein was discovered by Prof. Bauer’s working group, and its regulation mechanisms are being examined at the Institute of Botany at HHU. FIT can be present in an active and an inactive state. In the model plant Arabidopsis thaliana, it plays a key role in regulating iron uptake.

How the plant decides how much iron to absorb and how to transmit this information to the FIT regulator is, however, the subject of current research at HHU. The FIT regulation mechanism described in Düsseldorf combines different signals used by the plant to respond to environmental and stress conditions.

The Münster-based plant biologists working with Prof. Kudla from the Institute of Plant Biology and Biotechnology are specialised in understanding what is referred to as ‘cellular signal transduction’, in particular calcium signal transduction.

This involves a signal transmission whereby the plant converts and passes on information about the environment and triggers stress responses for example – or, as demonstrated in the present case, a better response to iron deficiency. To this end, the team at the WWU Institute of Inorganic and Analytical Chemistry headed up by Prof. Karst analysed the iron concentration in the plants.

So far, the precise link between iron and calcium was unclear. Now the research teams at HHU and WWU have found that iron deficiency triggers calcium signals, having a significant influence on the FIT regulation mechanism.

In the joint study published in Developmental Cell, the research teams describe how the enzyme CIPK11 linked to calcium detection can interact with and mark the FIT protein. Ultimately the plant can use this FIT activation to control iron uptake in its roots and iron storage in its seeds.

“We were able to track down molecular and cellular mechanisms that link FIT to the decoding of calcium signals. This in turn is important when the plant has to control iron uptake dependent on external factors”, explain Dr. Brumbarova and Prof. Bauer. Prof. Kudla adds: “Our discovery has implications for biological and also medical questions relating to nutrients, development processes and stress behaviours.”

Media contact

Dr. Arne Claussen
Heinrich Heine University Düsseldorf
Tel.: +49 (0)211/81-10896
arne.claussen@hhu.de

Dr. Kathrin Kottke
University of Münster
Tel.: +49 (0)251/83-21899
kathrin.kottke@uni-muenster.de

Originalpublikation:

Regina Gratz, Prabha Manishankar, Rumen Ivanov, Philipp Köster, Inga Mohr, Ksenia Trofimov, Leonie Steinhorst, Johannes Meiser, Hans-Jörg Mai, Maria Drerup, Sibylle Arendt, Michael Holtkamp, Uwe Karst, Jörg Kudla, Petra Bauer, and Tzvetina Brumbarova, CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling, Developmental Cell (2019).
DOI: 10.1016/j.devcel.2019.01.006

Weitere Informationen:

https://www.cell.com/developmental-cell/fulltext/S1534-5807(19)30006-1

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Further information:
http://www.hhu.de/

Further reports about: Arabidopsis Arabidopsis thaliana Iron WWU iron deficiency signal transduction

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>