Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants cope with iron deficiency

01.02.2019

Botany: Publication in Developmental Cell

Research groups from Heinrich Heine University Düsseldorf (HHU) and the University of Münster (WWU) have discovered a new switch that plants use to control their responses to iron deficiency. The findings from their research on the model plant Arabidopsis thaliana is published today in the journal Developmental Cell.


Plants adapt the iron acquisition in their roots to their current requirements. Iron deficiency triggers calcium signals. This information is passed on, activating the effector protein FIT.

HHU / Tzvetina Brumbarova

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health.

Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly.

Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant’s iron requirements vary throughout its development depending on external circumstances.

Because plants are sessile, they cannot escape their respective situation. Consequently, they have evolved strategies to recognise changing environmental conditions at an early stage and to adapt to these changes.

Particularly in view of climate change, understanding the processes that plants use to adjust to variations in food supply when environmental factors become unpredictable is also of major importance to the agricultural sector and its collaborating research partners in their endeavours to breed new varieties of high-yield crop plants.

Iron regulation is an important model system in plant biology for understanding how cellular regulation processes impact on each other and the related signalling paths. Researchers at HHU under the leadership of Prof. Petra Bauer and her associate Dr. Tzvetina Brumbarova and at WWU under the leadership of Prof. Jörg Kudla and Prof. Uwe Karst have examined the special mechanisms and dynamics of a protein named “FIT” in iron uptake and have discovered cellular information processes that impact on FIT.

The FIT protein was discovered by Prof. Bauer’s working group, and its regulation mechanisms are being examined at the Institute of Botany at HHU. FIT can be present in an active and an inactive state. In the model plant Arabidopsis thaliana, it plays a key role in regulating iron uptake.

How the plant decides how much iron to absorb and how to transmit this information to the FIT regulator is, however, the subject of current research at HHU. The FIT regulation mechanism described in Düsseldorf combines different signals used by the plant to respond to environmental and stress conditions.

The Münster-based plant biologists working with Prof. Kudla from the Institute of Plant Biology and Biotechnology are specialised in understanding what is referred to as ‘cellular signal transduction’, in particular calcium signal transduction.

This involves a signal transmission whereby the plant converts and passes on information about the environment and triggers stress responses for example – or, as demonstrated in the present case, a better response to iron deficiency. To this end, the team at the WWU Institute of Inorganic and Analytical Chemistry headed up by Prof. Karst analysed the iron concentration in the plants.

So far, the precise link between iron and calcium was unclear. Now the research teams at HHU and WWU have found that iron deficiency triggers calcium signals, having a significant influence on the FIT regulation mechanism.

In the joint study published in Developmental Cell, the research teams describe how the enzyme CIPK11 linked to calcium detection can interact with and mark the FIT protein. Ultimately the plant can use this FIT activation to control iron uptake in its roots and iron storage in its seeds.

“We were able to track down molecular and cellular mechanisms that link FIT to the decoding of calcium signals. This in turn is important when the plant has to control iron uptake dependent on external factors”, explain Dr. Brumbarova and Prof. Bauer. Prof. Kudla adds: “Our discovery has implications for biological and also medical questions relating to nutrients, development processes and stress behaviours.”

Media contact

Dr. Arne Claussen
Heinrich Heine University Düsseldorf
Tel.: +49 (0)211/81-10896
arne.claussen@hhu.de

Dr. Kathrin Kottke
University of Münster
Tel.: +49 (0)251/83-21899
kathrin.kottke@uni-muenster.de

Originalpublikation:

Regina Gratz, Prabha Manishankar, Rumen Ivanov, Philipp Köster, Inga Mohr, Ksenia Trofimov, Leonie Steinhorst, Johannes Meiser, Hans-Jörg Mai, Maria Drerup, Sibylle Arendt, Michael Holtkamp, Uwe Karst, Jörg Kudla, Petra Bauer, and Tzvetina Brumbarova, CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling, Developmental Cell (2019).
DOI: 10.1016/j.devcel.2019.01.006

Weitere Informationen:

https://www.cell.com/developmental-cell/fulltext/S1534-5807(19)30006-1

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Further information:
http://www.hhu.de/

Further reports about: Arabidopsis Arabidopsis thaliana Iron WWU iron deficiency signal transduction

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>