Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants cope with iron deficiency

01.02.2019

Botany: Publication in Developmental Cell

Research groups from Heinrich Heine University Düsseldorf (HHU) and the University of Münster (WWU) have discovered a new switch that plants use to control their responses to iron deficiency. The findings from their research on the model plant Arabidopsis thaliana is published today in the journal Developmental Cell.


Plants adapt the iron acquisition in their roots to their current requirements. Iron deficiency triggers calcium signals. This information is passed on, activating the effector protein FIT.

HHU / Tzvetina Brumbarova

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health.

Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly.

Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant’s iron requirements vary throughout its development depending on external circumstances.

Because plants are sessile, they cannot escape their respective situation. Consequently, they have evolved strategies to recognise changing environmental conditions at an early stage and to adapt to these changes.

Particularly in view of climate change, understanding the processes that plants use to adjust to variations in food supply when environmental factors become unpredictable is also of major importance to the agricultural sector and its collaborating research partners in their endeavours to breed new varieties of high-yield crop plants.

Iron regulation is an important model system in plant biology for understanding how cellular regulation processes impact on each other and the related signalling paths. Researchers at HHU under the leadership of Prof. Petra Bauer and her associate Dr. Tzvetina Brumbarova and at WWU under the leadership of Prof. Jörg Kudla and Prof. Uwe Karst have examined the special mechanisms and dynamics of a protein named “FIT” in iron uptake and have discovered cellular information processes that impact on FIT.

The FIT protein was discovered by Prof. Bauer’s working group, and its regulation mechanisms are being examined at the Institute of Botany at HHU. FIT can be present in an active and an inactive state. In the model plant Arabidopsis thaliana, it plays a key role in regulating iron uptake.

How the plant decides how much iron to absorb and how to transmit this information to the FIT regulator is, however, the subject of current research at HHU. The FIT regulation mechanism described in Düsseldorf combines different signals used by the plant to respond to environmental and stress conditions.

The Münster-based plant biologists working with Prof. Kudla from the Institute of Plant Biology and Biotechnology are specialised in understanding what is referred to as ‘cellular signal transduction’, in particular calcium signal transduction.

This involves a signal transmission whereby the plant converts and passes on information about the environment and triggers stress responses for example – or, as demonstrated in the present case, a better response to iron deficiency. To this end, the team at the WWU Institute of Inorganic and Analytical Chemistry headed up by Prof. Karst analysed the iron concentration in the plants.

So far, the precise link between iron and calcium was unclear. Now the research teams at HHU and WWU have found that iron deficiency triggers calcium signals, having a significant influence on the FIT regulation mechanism.

In the joint study published in Developmental Cell, the research teams describe how the enzyme CIPK11 linked to calcium detection can interact with and mark the FIT protein. Ultimately the plant can use this FIT activation to control iron uptake in its roots and iron storage in its seeds.

“We were able to track down molecular and cellular mechanisms that link FIT to the decoding of calcium signals. This in turn is important when the plant has to control iron uptake dependent on external factors”, explain Dr. Brumbarova and Prof. Bauer. Prof. Kudla adds: “Our discovery has implications for biological and also medical questions relating to nutrients, development processes and stress behaviours.”

Media contact

Dr. Arne Claussen
Heinrich Heine University Düsseldorf
Tel.: +49 (0)211/81-10896
arne.claussen@hhu.de

Dr. Kathrin Kottke
University of Münster
Tel.: +49 (0)251/83-21899
kathrin.kottke@uni-muenster.de

Originalpublikation:

Regina Gratz, Prabha Manishankar, Rumen Ivanov, Philipp Köster, Inga Mohr, Ksenia Trofimov, Leonie Steinhorst, Johannes Meiser, Hans-Jörg Mai, Maria Drerup, Sibylle Arendt, Michael Holtkamp, Uwe Karst, Jörg Kudla, Petra Bauer, and Tzvetina Brumbarova, CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling, Developmental Cell (2019).
DOI: 10.1016/j.devcel.2019.01.006

Weitere Informationen:

https://www.cell.com/developmental-cell/fulltext/S1534-5807(19)30006-1

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Further information:
http://www.hhu.de/

Further reports about: Arabidopsis Arabidopsis thaliana Iron WWU iron deficiency signal transduction

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>