Green plants reduce city street pollution up to 8 times more than previously believed

Thomas Pugh and colleagues explain that concentrations of nitrogen dioxide (NO2) and microscopic particulate matter (PM) — both of which can be harmful to human health — exceed safe levels on the streets of many cities. Past research suggested that trees and other green plants can improve urban air quality by removing those pollutants from the air.

However, the improvement seemed to be small, a reduction of less than 5 percent. The new study sought a better understanding of the effects of green plants in the sometimes stagnant air of city streets, which the authors term “urban street canyons.”

The study concluded that judicious placement of grass, climbing ivy and other plants in urban canyons can reduce the concentration at street level of NO2 by as much as 40 percent and PM by 60 percent, much more than previously believed. The authors even suggest building plant-covered “green billboards” in these urban canyons to increase the amount of foliage. Trees were also shown to be effective, but only if care is taken to avoid trapping pollutants beneath their crowns.

The authors acknowledge funding from the UK Engineering and Physical Sciences Research Council Sustainable Urban Environment program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors