Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene recombination deactivates retroviruses during invasion of host genomes

07.08.2018

Most vertebrate genomes contain a surprisingly large number of viral gene sequences – about eight percent in humans. And yet how do exogenous viruses – apparently having invaded from outside – manage to become integrated into the host genome? Answers to this question are provided in a study by an international team of researchers led by Alex Greenwood of the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in Berlin.

Working with the example of koalas, the researchers have now identified key stages in the process, called “endogenization”, by which a host is invaded by exogenous retroviruses. The scientists also uncovered a process by which the host genome mounts a defense against the invaders. The results have now been published in the scientific journal PNAS.


Wirri Wirri.

Photo: Daniel Zupanc

By using the enzyme reverse transcriptase, retroviruses convert their RNA genomes into DNA in order to integrate retroviral genes into the genome of the host. If the retroviruses manage to infect germ cells, the infected host will then transmit the viral sequences to its offspring.

Sequences of human endogenous retroviruses, referred to as HERVs, comprise around eight percent of the human genome. Although recombination, and later mutations, led to the inactivation of most HERVs in the distant past, some viral sequences are still being read and encode for proteins. They are thought to trigger cancer and autoimmune diseases in some cases.

As was the case with all mammals and birds, our ancestors were infected by these viruses millions of years ago. “The original viruses have long become extinct, and the sequences integrated into the host germ line have been altered so considerably by mutation that it is hard to determine which changes were important and which processes were initially involved,” explained Alex Greenwood, head of the Department of Wildlife Diseases at the Leibniz-IZW and senior author of the study. “With koalas, however, we are able to follow this process live, as it were, since the retrovirus is currently transitioning into the koala genome and the process has not yet been completed.”

The sequencing of the koala genome (published recently in Nature Genetics), also conducted with the involvement of the Leibniz-IZW scientists, featured the use of a high-throughput sequencing method known as long-read sequencing. This method enabled the researchers to identify not only repetitive DNA regions such as retroviruses, but also to identify flanking sequences from the host genome, and to explore the process of their invasion using the example of this marsupial. For their latest study, the team examined DNA samples from 169 wild koalas, as well as from two zoo koalas and six historic museum specimens.

The koala genome project and other previous studies had discovered that the quantity of endogenous koala retroviruses (KoRV) differs greatly by region, which can be explained by the natural barriers along the east coast of Australia. These barriers prevent the mixing of populations, and therefore also unchecked proliferation of the virus: whereas in the northeast in Queensland all animals are already infected, the researchers found that the further south they went, the lower the number of KoRVs per koala.

Even in koalas from less infected populations, the scientists found highly modified viral sequences (recKoRV) in the koala genome that differed from the intact virus. These sequences appear to be the result of recombination with very old viral genomic elements also present in other Australian marsupials.

What are the implications of these findings? “We believe that the first ancient viral components – that became fixed in the koala genome and are no longer pathogenic – defend the host genetic material: by recombining, they incapacitate the new viral sequences, even if the older viruses now have only little resemblance to their original sequences,” stated Alex Greenwood. “That’s good news for the koalas! Because recombinant virus sequences are likely to be less harmful than the original.”

In addition, 17 independent recombination events between KoRV and an old, degraded virus fragment (PhER) must have taken place – exclusively between KoRV and PhER. One of these recombinants (recKoRV1) is very common in koalas, with several copies existing in each animal. This suggests that recKoRV1 was independently created several times at different points in the past.

“Regardless of which region of Australia the sample came from, some sequences of endogenous KoRV were always recombinant and highly degraded. We assume that this process represents a very early stage in the endogenization of exogenous retroviruses,” stated Alex Greenwood.

Publications:
Löber U, Hobbs M, Dayaram A, Tsangaras K, Jones K, Alquezar-Planas DE, Ishida Y, Meers J, Mayer J, Quedenau C, Chen W, Johnson RN, Timms P, Young P, Roca AL, Greenwood AD (2018): Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ line invasion. PNAS DOI:???
Johnson RN, O’Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O’Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AJJ, Deakin JE, Palma FD, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Marshall Graves JA, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K (2018): Adaptation and conservation insights from the koala genome. Nature Genetics 50, 1102–1111.

Wissenschaftliche Ansprechpartner:

Leibniz Institute for Zoo and Wildlife Research (IZW)
in the Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17, 10315 Berlin, Germany

Alex Greenwood
Tel. 030 51 68 255
Steven Seet
Tel. 030 51 68 125)

Weitere Informationen:

http://greenwood@izw-berlin.de
http://seet@izw-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.

Further reports about: DNA PNAS endogenous genomes recombination retroviruses viruses

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>