Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forty's a crowd

29.06.2012
'Paper of the week' shows that a master regulator protein brings plethora of coactivators to gene expression sites

Molecular geneticists call big boss proteins that switch on broad developmental or metabolic programs "master regulators," as in master regulators of muscle development or fat metabolism. One such factor, the Activating Transcription Factor 6£ (ATF6£) protein, takes charge following a cellular crisis known as endoplasmic reticulum (ER) stress, which is triggered by the accumulation of misfolded and aggregated proteins.

Molecularly, the ER stress pathway is always poised for action. Inactive ATF6£ is normally embedded in cellular membranes, but at the first hint of protein overload, its working end springs superman-like into the nucleus, binds DNA and kicks on a host of target genes whose job is to clear a protein logjam.

Now, in a study published in the June 29 issue of The Journal of Biological Chemistry, and selected as "Paper of the Week" by the journal's editors, a team led by Stowers investigators Ron and Joan Conaway reveal that unlike the real superman ATF6£ does not work solo. Using the ATF6£ target gene HSPA5 as a probe, they apply mass spectrometry analysis to show that ATF6£ recruits a fleet of coactivators to assist in target activation.

"We knew that as a master regulator, ATF6£ was needed to turn on downstream genes in the ER stress response," says Ron Conaway, Ph.D., who with Joan Conaway, Ph.D., is co-corresponding author of the study. "Our goal was to determine what ATF6£ was bringing with it to these genes' control elements."

"By devising a clever mix of state-of-the-art mass spectrometry and good old-fashioned biochemistry, this study has revealed that ATF6£ is a virtual magnet for a wide range of 'A-list' co-regulators," said Michael K. Reddy, Ph.D., who oversees transcription mechanism grants at the National Institutes of Health's National Institute of General Medical Sciences, which partly supported the work. "These co-regulators offer a large array of proteins to target in efforts to control the ER stress response and to treat diseases that result from misfolded proteins."

That task of identifying co-regulators was challenging: labor-intensive molecular techniques the group applied to identify candidate interactors early on were not sensitive enough. At that point, the Conaways turned to their frequent collaborators Proteomics' Center director, Michael Washburn, Ph.D., and Laurence Florens, Ph.D., who heads the Stowers proteomics cores. Both had helped develop a sensitive mass spectrometry approach that can detect protein-protein interactions in highly complex mixtures, a technology known as MudPIT.

The group then set up a test-tube comparison. They genetically engineered a strand of DNA flanking the HSPA5 target gene, the so-called "enhancer" region recognized by ATF6£. They then dipped two identical DNA test strips into respective pots of cellular extracts¡Xone containing ATF6£ and one not¡Xreasoning that factors in the ATF6£ entourage would be recruited to the first but not the second. They then applied a single run of MudPIT to identify each ATF6£-specific partner.

In short, they found that it takes not a village but a metropolis to activate an ATF6£ target. Many proteins bound the enhancer in both samples, meaning either that they're just background, or else that they must bind DNA even when the gene is inactive. But more than 40 were present in about 5-fold excess only in ATF6£ƒ{spiked samples, suggesting they are tethered to the enhancer by ATF6£.

Among the latter were components of a multi-subunit behemoth protein known as Mediator, which bridges specific genetic switches (like ATF6£) and the catalytic machinery that copies a gene. Other proteins recruited by ATF6£ through overlapping but not identical domains belonged to other large complexes known as SAGA and ATAC, which enzymatically relax chromosome structure to allow gene expression.

Researchers know that all DNA-binding factors partner with other proteins to switch genes on or off. What is remarkable here is their sheer number. "It would be very interesting to find out whether this is the norm," says Ron Conaway. "This work raises a ton of little questions about mechanism."

Among them is how do ATF6£-interacting factors arrange themselves on the test strip, and does a single ATF6£ bind to all of them at once? "There are three separate ATF6£ binding sites on the HSPA5 enhancer and ATF6£ itself forms a dimer," explains Dotan Sela, Ph.D., a Conaway lab postdoc and the study's first author, "So potentially within this region there could be as many six activation domains," he explains.

Solving these puzzles could reveal molecular targets for seemingly unrelated diseases. While a little ATF6£ signaling is absolutely essential for cellular housekeeping, unrelieved ER stress is a hallmark of neurodegenerative conditions like Alzheimer's and Huntington's Diseases and is correlated with insulin insensitivity and type II diabetes.

A direct role for ATF6£ in what some now call "misfolded protein diseases" is unclear. Nonetheless, the study suggests ways to dampen ER stress signaling molecularly. "We show that the Mediator is relevant to HSPA5 expression," says Sela. "So one way to keep ATF6£ from turning on a gene might be to devise ways to block binding of the Mediator to ATF6£."

Joan Conaway also points out that MudPIT data analysis does not require previous identification of a "suspect." "Our approach complements methods that test candidate interactors one by one," says Joan Conaway. "Because the analysis is unbiased, it could reveal novel proteins interacting with a particular enhancer, which then could be confirmed using other methods."

The Conaways began their pioneering studies of mammalian gene expression over three decades ago, when only laborious biochemical techniques were available. As a result, both deeply appreciate what a technological leap the current work represents. "This study provides proof of principle for the utility of mass spectrometry in defining novel transcriptional activators," says Ron Conaway. "We want to compare this data with that from other activators¡Xit's what we will be working on in the future."

In addition to Washburn and Florens, Lu Chen of the Conaway lab and Skylar Martin-Brown of the Washburn lab also contributed to the work.

Funding for the study came from the Stowers Institute for Medical Research, the National Institute of General Medical Science (GM041628) and the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Kristin Kessler | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Mangroves and their significance for climate protection

26.03.2019 | Earth Sciences

New gene potentially involved in metastasis identified

26.03.2019 | Life Sciences

Riveting,Screwing, Gluing in Aircraft Construction: Smart Human-Robot Teams Master Agile Production

26.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>