Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For a better understanding of ash dieback: Scientists of the TU Braunschweig discover phytotoxic

20.03.2014

Scientists of the Technical University of Braunschweig made a significant contribution to the understanding of the European Ash dieback by isolating a previously unknown substance from the pathogen and investigating its destructive character. The metabolite proved to have a germination inhibiting effect towards ash and causes necroses in the plant tissue. The results of their studies were published in the current issue of the journal „Angewandte Chemie“.

The pathogen of ash dieback, the fungus Hymenoscyphus pseudoalbidus, was discovered only a few years ago. This fungus currently invades from Asia and causes effects that are visible since almost two decades.


Evidence of the harmful effect of the lactone of germinated seeds

TU Braunschweig

Since the 1990’s a significant part of the ash population in Europe was devastated by the fungus. An important contribution for the revalation of the pathogenicity of this organism was now made by scientists from the Institutes of Organic Chemistry and Microbiology from the TU Braunschweig. 

The German scientists around Dr. Jeroen Dickschat and Dr. Barbara Schulz investigated the largely unknown secondary metabolism of the pathogenic fungus. They discovered a volatile lactone (3,4-dimethylpentan-4-olide) in the headspace of agar plate cultures of the fungus for which they used special equipment for headspace analysis (closed-loop stripping apparatus). The Institute of Organic Chemistry is one of the few institutions that have access to and experience with this method, explains Dr. Dickschat.

Biologists then testet the bioactivity of the volatile lactone against seeds of the ash tree. The lactone exhibited a strong germination inhibition towards ash seeds and caused necroses on the seedlings. By this agressive property, the fungus destroys its own host and habitat, comments Dr. Dickschat. The scientists came to the conclusion that only the European Ash is attacked by the lactone, whereas its Japanese sister species seems to be immune.

„We assume that the phytotoxic lactone plays a main role in the pathogenicity of the fungus“, says Dr. Dickschat, „but there are likely more factors involved that may originate from the plant itself.“ The scientists from Braunschweig hope to lay the ground for further work to understand the pathogenicity mechanisms of H. pseudoalbidus and probably pave the way to a control of the disease.

Publication
C. A. Citron, C. Junker, B. Schulz, J. S. Dickschat, Ein flüchtiges Lacton aus Hymenoscyphus pseudoalbidus, Pathogen des Europäischen Eschensterbens, inhibiert die Keimung seines Wirtes, Angew. Chem. 2014, DOI: 10.1002/ange.201402290.

C. A. Citron, C. Junker, B. Schulz, J. S. Dickschat, A Volatile Lactone of Hymenoscyphus pseudoalbidus, Pathogen of European Ash Dieback, Inhibits Host Germination, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201402290.

Contact
PD Dr. Jeroen S. Dickschat
Institute of Organic Chemistry
Technical University of Braunschweig
Hagenring 30
D-38106 Braunschweig
Germany
Phone: +49 (531) 391-5264
E-Mail: j.dickschat@tu-bs.de
http://www.oc.tu-bs.de/dickschat

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/p=6791

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Further reports about: Organic fungus metabolism pathogenicity phytotoxic seeds volatile

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>