Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent Grooves

12.12.2008
Fingerprints from the scene of the crime will soon reveal drug abuse

In order to arrest a culprit, police look for fingerprints at the scene of the crime.

Magnetic powder is applied to the surfaces of objects with a magnetic brush to make these latent fingerprints visible. It may now be possible to use latent fingerprints to detect the use of drugs as well.

As reported in the journal Angewandte Chemie, forensic scientists would not even have to change the magnetic brush technique they have used since the 1960s: British scientists at the University of East Anglia in Norwich and King’s College in London have developed a process based on magnetic particles and antibodies that causes fingerprints to fluoresce if they were made by a drug user.

Components of drug metabolites can be detected in sweat. “This also works for the tiny amounts of sweat left behind in the characteristic pattern of grooves and ridges of fingerprints left on the objects that were touched,” explains David A. Russell. To do this, Russell and his team used specially coated magnetic particles with antibodies attached. The antibodies bind specifically to drug components or metabolites. Fingerprints of volunteer test subjects from drug clinics were dusted with this magnetic powder. The prints were then treated with a solution containing an antibody bound to a fluorescing dye. This second antibody binds to the first. If the fingerprint was made by a drug user, it turned yellowish brown. Under visible light, these fingerprints glowed green or red, depending on the fluorescent dye used.

By using the corresponding specific antibodies, the scientists were able to detect THC (the main active component of marijuana), benzoylecgonine (the primary metabolite of cocaine), and methadone and the primary metabolite of methadone in the fingerprints of test subjects. Variation of the antibodies makes it possible to develop detection procedures for other substances of interest.

The characteristic pattern of the fingerprint is maintained. The fingerprints are highly resolved and can be lifted for comparison with known fingerprints, just as in the standard procedure. At higher magnification it is even possible to see the tiny sweat pores along the ridges of the fingertip, which can also be used for unambiguous identification.

“The advantage of this method is that potentially only simple, portable equipment is needed, which can be brought along for a crime scene investigation with no problem,” says Russell. “The magnetic particles make it possible to remove excess reagent with the usual magnetic brush, no complex washing procedures would be needed.”

Author: David A. Russell, University of East Anglia, Norwich (UK), http://www1.uea.ac.uk/cap/people/faculty/dar/

Title: Imaging of Latent Fingerprints through the Detection of Drugs and Metabolites

Angewandte Chemie International Edition 2008, 47, No. 52, 10167–10170, doi: 10.1002/anie.200804348

David A. Russell | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www1.uea.ac.uk/cap/people/faculty/dar/

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>