Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish on the run

29.06.2015

Researchers describe how an approaching object triggers a flight reaction in the fish brain

Humans and animals instinctively evade rapidly approaching objects. By doing so, they avoid collisions or escape attacking predators. For this to happen, the brain must calculate the direction and speed of a stimulus in the visual system and initiate an appropriate evasive reaction.


The zebrafish tectum recognizes an approaching object as a threat. This brain area is innervated by axons from the eye (stained blue).

© Max Planck Institute of Neurobiology / Temizer

How the brain achieves this is largely unclear. Scientists from the Max Planck Institute of Neurobiology in Martinsried have now shown in zebrafish larvae what is interpreted as an approaching foe and which area of the brain recognizes an object as a threat and initiates a flight reaction.

Duck! In most cases, this warning is not necessary when we see an object approaching on collision course. Whether in a fly, fish, mouse or human, such situations generally trigger a stereotypical evasive reaction. In this way, potential predators or injury can be avoided.

“Because this behaviour is so similar across the entire animal kingdom, there is probably a hardwired programme for it in the brain,” says Incinur Temizer, summarizing the essence of her doctoral dissertation. In Herwig Baier’s Department at the Max Planck Institute of Neurobiology, she is studying, based on this example, how the brain converts sensory impressions into behavioural responses.

Incinur Temizer and her colleague Julia Semmelhack have now shown that zebrafish larvae measuring just a few millimetres in length flee from a two-dimensional representation of an object moving towards them. To pinpoint the location of the responsible circuit in the brain, the scientists first determined what exactly triggers the flight reflex.

In a series of experiments, they showed the fish a range of objects that differed in size, brightness and speed. The results showed that the flight reflex is most reliably triggered by a dark disc that "looms", meaning that it gradually increases in size.

The researchers then used optical methods to measure brain activity in response to this “key stimulus”. This is possible, as the tiny fish larvae are completely transparent. Thanks to a genetic modification, the brain areas that are active fluoresce under a microscope. In this way, the scientists were gradually able to narrow down the precise area of the brain that recognizes an approaching enemy and triggers a flight reflex.

The image of a looming object on the retina activates highly specific ganglion cells, which then relay the information to an area in the fish’s brain known as the tectum. The tectum assigns objects to a location in visual space and coordinates movement towards or away from such objects.

“We were able to show, for the first time, that neurons in the retina recognize an approaching object and trigger an evasive reaction through links to the tectum,” says Julia Semmelhack, summarizing the findings of the recently published study. That the tectum is really critical became clear when the researchers cut off the input of these retinal ganglion cells: such fish larvae were not entirely blind but no longer responded to approaching objects.

Contact

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514

Email: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3200

Fax: +49 89 8578-3208

Email: hbaier@neuro.mpg.de


Original publication
Incinur Temizer, Joseph Donovan, Herwig Baier, Julia Semmelhack

A visual pathway for looming-evoked escape in larval zebrafish

Current Biology, 25 June 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried

Further reports about: Fish Max Planck Institute Neurobiology Zebrafish fish larvae ganglion cells larvae stimulus

More articles from Life Sciences:

nachricht From Receptor Structure to New Osteoporosis Drugs
20.11.2018 | Universität Zürich

nachricht Mutation that causes autism and intellectual disability makes brain less flexible
20.11.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>