Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Sweet Spot

19.12.2011
Modifications to chromosomal proteins help ensure that brain-specific sugars are produced only in the appropriate tissues.

Many proteins are adorned with carbohydrate chains called glycans that can dramatically alter their stability, localization or function. These diverse sugars are assembled and modified by a variety of glycosylating enzymes, with some glycans exclusively manufactured within specific organs or tissues.


Figure 1: Neural cell-specific modifications to chromosomal proteins govern the production of Gnt-IX and thereby ensure that branched O-mannose glycan production is restricted to these cells.
Copyright : 2011 iStockphoto/sitox

The â1,6-branched O-mannosyl glycan appears only in the mammalian brain. Naoyuki Taniguchi’s team at the RIKEN Advanced Science Institute in Wako recently characterized the enzyme, N-acetylglucosaminyltransferase IX (GnT-IX, also called GnT-Vb) that produces this particular glycan variant1 (Fig. 1). “We knew that some glycan-synthesizing enzymes are expressed in restricted tissues, but did not know how they are expressed,” says Yasuhiko Kizuka, a researcher in Taniguchi’s laboratory. “This led us to investigate how GnT-IX is specifically expressed in the brain.”

Many genes are regulated by so-called ‘epigenetic mechanisms’, in which gene expression is modulated via modification of the histone protein scaffold that supports chromosomal DNA, and the researchers began by examining this possibility. When histone proteins undergo a modification known as acetylation, nearby genes are typically activated; conversely, removal of this acetylation has an inhibitory effect.

Taniguchi and colleagues determined that the gene encoding GnT-IX is typically maintained in an inactive, non-acetylated state in 3T3-L1, a cell line derived from the fibroblasts that form connective tissue. However, when the researchers treated these cells with a drug that promotes histone acetylation, they strongly expressed GnT-IX. The brain tumor-derived Neuro2A cell line, however, naturally expresses high levels of GnT-IX. The researchers found that these cells normally maintain the chromatin near this gene in a state that stimulates activation.

In subsequent experiments, Kizuka and Taniguchi not only identified specific DNA sequences that directly regulate GnT-IX activity, but also two proteins that bind to these sites to drive expression. They found one of these factors, CTCF, in both 3T3-L1 and Neuro2A cells, but its recruitment to the GnT-IX gene was far stronger under the favorable histone modification conditions found in the latter cells.

Intriguingly, a preliminary screen of four other glycosylation enzymes suggested that similar mechanisms govern their tissue-specificity. “Our work suggests that expression of many other glyco-genes could be regulated epigenetically,” says Kizuka.

In future studies, the researchers intend to explore how this regulatory mechanism plays into the bigger picture of glycan function. “Our group has been trying to elucidate the ‘glycan cycle’—how glycans are dynamically synthesized, play diverse roles and are degraded—using a systems biology approach,” says Kizuka. “This work tells us that epigenetic regulation is a part of this cycle.”

The corresponding author for this highlight is based at the System Glycobiology Research Group, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>