Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facts and Fascination: "Marine Biology" at 3000m above sea level

02.09.2011
A current exhibition by National Geographic Germany at the Museum of Natural History Vienna provides visitors with a fascinating insight into the world of palaeontology.

The exhibition presents 50 breath-taking photographs of the Dolomites along with research data. Researchers obtained this data from deposits of former marine life, found in the Dolomites´ Cretaceous origin. The data provides information on what lifestyle habits and climate were like 140 to 90 million years ago.

These results, from a project of the Austrian Science Fund FWF, are supplemented with a film that further shows the beauty of the analysed fossils, as well as the adverse conditions under which science is conducted 3000m above sea level. The exhibition therefore not only presents research results, but also puts them into an exciting context.

Mountains aren´t what they used to be. This applies in particular to the Dolomites. Around 140 to 90 million years ago, they were in fact part of the sea floor rather than mountains - thousands of meters high. Over millions of years, deposits were then formed from calcareous shells of marine life from the Mesozoic era. Tectonic forces later caused these sediments to rise upward to the mountaintops of today´s well-known and popular Southern Alps. The mountain range contains one of the most complete and most accessible geological records - also being one of the richest in fossils - from the Cretaceous period in Europe. This record was scientifically analysed in-depth for the first time within the framework of a project supported by the Austrian Science Fund FWF. In addition to basic analyses of the deposits, researchers also examined questions regarding the habitat and the biology of the original marine life, as well as the climatic conditions which existed at the time.

RESEARCH, FILM & PHOTOS
Initial results of the research project are now presented in a rather unusual way: As part of the exhibition entitled "Dolomiten - Das steinerne Herz der Welt" (Dolomites - the Stone Heart of the World), results will be presented to the public beginning on 2 September along with 50 photos by National Geographic photographer Georg Tappeiner and an exciting film. Senior researcher Dr. Alexander Lukeneder from the Geological and Paleontological Department of Vienna´s Museum of Natural History says: "When conveying the results of our research, we find it important to also present the adventure of research and its beauty, in addition to factual data. Georg Tappeiner´s beautiful photos capture the breath-taking aesthetics of the Dolomites. The film of the palaeontology team captures more than the attractiveness of research objects. It shows the difficulties and efforts of conducting research far from any infrastructure, in extreme cold and 3000m above sea level. This almost makes our results seem secondary."

Some of these results are, however, quite spectacular. Dr. Lukeneder´s international team proved that sea temperatures in the Mediterranean area rose by 10 to 12 degrees Celsius during the Lower Cretaceous period 140 to 90 million years ago. "We were able to prove this extreme greenhouse effect by means of special analyses of the calcareous stone. The origin of this stone lies in the deposits of dead nanoplankton and the sedimentation of calcareous microfossils, like the foraminifera," says Dr. Lukeneder about his work. While the marine organisms were still alive, oxygen was incorporated into their calcareous shells. The oxygen isotope ratio (18O to 16O) depended on the temperature of the surrounding water. The process of fossilisation preserved this biological thermometer perfectly for millions of years.

"HIGH" RESOLUTION
The overall aim of this international project was to conduct a high-resolution mapping of the Dolomites´ deposits from the Lower Cretaceous at 2500m above sea level. This included not only the analysis of macro- and microfossils and the isotope ratios, but also the study of rock layers (Puez Formation) and their magnetic relationships, as well as the influence of various cycles during the formation of these layers. The team consisting of 32 researchers focused especially on an area in the Puez-Geisler Nature Park, which was declared a World Natural Heritage site by UNESCO in 2009. The current exhibition at the Museum of Natural History Vienna shows, in a very impressive way, that this heritage site comprises both natural beauty and a data archive from the Cretaceous period that is many million of years old.
Image and text will be available online from Friday, 2 September 2011, 9 am CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201109-en.html

Scientific contact:
Dr. Alexander Lukeneder
Museum of Natural History Vienna
Burgring 7
1010 Vienna, Austria
T +43 / (0)1 / 521 77 - 251
E alexander.lukeneder@nhm-wien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201109-en.html

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>