Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme mobility of mantis shrimp eyes

02.05.2018

New research, led by biologists from the University of Bristol, has uncovered fresh findings about the most mobile eyes in the animal kingdom - the eyes of the mantis shrimp.

Mantis shrimp vision is extraordinary, both in terms of their colour vision and their ability to see the polarisation of light.


The extraordinary eyes of the stomatopod Odontodactylus scyllarus are capable of independent rotation in all three rotational degrees of freedom, leading to complex gaze stabilization behavior.

Credit: Michael Bok

Not only this, but they have extremely mobile eyes that never seem to stop moving. While most animals keep eye movements to a minimum to avoid blur, mantis shrimp apparently go out of their way to move their eyes as much as possible.

Each eye is capable of independent rotation in all three degrees of rotational freedom; pitch (up-down), yaw (side-to-side) and roll (twisting about the eye-stalk).

The Bristol-led team of researchers based at the University's Ecology of Vision Laboratory, wanted to test the limits of this incredible mobility to discover at what point mantis shrimp have to steady their gaze. Their findings are published today in the journal Proceedings of the Royal Society B.

Like other animals, mantis shrimp do make stabilising side-to-side movements that help keep their vision steady as they move through the world, but the team found that even while stabilising in the horizontal direction, they can't resist rolling their eyes.

This is completely counter-intuitive; the whole point in stabilising gaze is to keep the appearance of the world around them steady, but by rolling their eyes 'up' suddenly becomes 'sideways' and the world gets very complicated.

Amazingly, this has no effect on the mantis shrimp - no matter what position they've rolled their eyes to, or how quickly they're rolling, mantis shrimp can still reliably and accurately follow the motion of a pattern that is moving sideways.

Ilse Daly from Bristol's School of Biological Sciences and lead author of the study, said: "It would be like you tipping your head on its side, then back to normal and all angles in between all while trying to follow the motion of a target.

"Just to make things even more confusing, the left and right eyes can move completely independently of one another, such that one eye could be oriented horizontally, while the other could be twisted completely through 90 degrees to be on its side."

Following this unexpected discovery, the team tested to see how mantis shrimp would respond if the world started to roll around them.

In humans, such a stimulus would induce severe vertigo, as visitors to certain theme parks may have experienced with rides which challenge people to walk through a tunnel along a solid, fixed gangway while the walls of the tunnel rotate around them - which is nearly impossible to do without falling over.

Ilse Daly added: "We expected that, in response to the world around them apparently rolling, mantis shrimp should roll their eyes to follow their surroundings. They did not.

"The mantis shrimp visual system seems entirely immune from any negative effects of rolling their eyes. Indeed, it appears as though rolling has absolutely no effect on their perception of space at all: up is still up, even when their eyes have rolled completely sideways. This is unprecedented in the animal kingdom."

The next step is to confirm the existence of such a unique motion detection system and fully explore how it provides mantis shrimps with a clear view of the world regardless of how much or how quickly they're rolling their eyes.

However, a more fundamental question is why mantis shrimp need to roll their eyes in the first place, and this is what the team will seek to answer next.

Iles Daly | EurekAlert!

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>