Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

eForFuel: Fuels from CO2 and Electricity

05.06.2018

ifeu is taking part in eForFuel, an exciting EU-funded research and innovation action that seeks to provide a sustainable replacement of fossil fuels by using electricity and microorganisms to convert CO2 into renewable fuels.

eForFuel is a Horizon 2020 EU project launched in March 2018 and scheduled to run for the next 4 years with funding of around 4 million Euros.


eForFuel

© Biofaction

The project is led and coordinated by scientists at the Max Planck Institute (MPI) of Molecular Plant Physiology in Germany and boasts the participation of 14 industrial and academic partners from 9 European and associated countries.

eForFuel is a truly interdisciplinary project aiming to achieve its research targets of offering sustainable alternatives to fossil fuels.

Greenhouse gases (especially CO2) emitted from the burning of fossil fuels are significant drivers of climate change and a global threat to society and the environment. Hence, it is very important to replace fossil fuels with an alternative, sustainable sources.

Early generation 'biofuels' compete with land resources, limit agricultural production of food, and, therefore, cannot completely replace fossil fuels without severely undermining food security and decreasing biodiversity.

In order to overcome this problem, eForFuel provides a novel solution to utilize resources that are essentially unlimited and that are independent of land use: CO2, electricity and water.

"What makes eForFuel unique is the sustainable production chain that converts CO2 emissions and renewable electricity into easy to handle formic acid, which is then fed to engineered microbes for the production of renewable hydrocarbon fuels", says project coordinator Arren Bar-Even from MPI.

eForFuel aims to establish and demonstrate a unique integrated electro-bioreactor, which automatically integrates CO2 electro-reduction, formate production and formate bioconversion to hydrocarbons that can serve as "drop in" fuels. This integrated system will serve as a stepping-stone towards transforming the way we produce fuels and carbon-based chemicals.

"We will support the process developers by continuously providing them with insights gained from life cycle assessment (LCA)", explains Nils Rettenmaier from the Institute for Energy and Environmental Research Heidelberg (ifeu), leading scientist in the project.

ifeu from Germany will provide a key contribution to eForFuel by taking care of the integrated sustainability assessment. In collaboration with other project partners, the impacts of eForFuel products on the main pillars of sustainability will be assessed.

eForFuel, which was launched in March 2018 in Berlin, is a 4-year project funded by the European Union’s Horizon

Updates can be found at www.eforfuel.eu  and on Twitter @eforfuel

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2228860/eforfuel

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>