Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust-plumes power intercontinental microbial migrations

18.12.2012
Along with pollutants from Asia, transpacific dust plumes deliver vast quantities of microbes to North America, according to a manuscript published online ahead of print in the journal Applied and Environmental Microbiology.

"We detected thousands of unique microbial species, many of which seem particularly well-suited for atmospheric transport," says first author David J. Smith, a graduate student at the University of Washington, Seattle. "We also detected archaea, a domain of life that has never before been sampled at high altitude. We are just starting to understand the consequences of long-range microbial transport."

"Over 70 million tons of Asian aerosols—mostly dust—reach our continent every year," says Smith. "There could be thousands of microbes per gram of dust. Do the math. The number is staggering. Distant continents are essentially sneezing on each other."

Although the research is basic, Smith foresees value in understanding how bacteria survive at high altitudes during intercontinental journeys. For example, identifying the mechanisms for resisting ultraviolet radiation at altitude, which likely involve protecting and repairing DNA, could prove invaluable to biotechnology and medicine, says Smith. "It is difficult to predict specific breakthroughs and applications, but studying microbes in extreme environments has had practical benefit before," he says, mentioning discovery of a thermostable enzyme from microbes in the hot springs of Yellowstone National Park, which proved invaluable to Polymerase Chain Reaction. Additionally, developing predictive models of disease dispersal via the tradewinds "could be of tremendous value to farmers," says Smith.

The research took place at an observatory perched on the summit of a volcano in the Pacific Northwest, says Smith. "We could process huge volumes of air, 24/7, and capture enough biomass to analyze airborne microorganisms using molecular methods." Two major pollution events emanating from Asia during the sampling season of 2011 helped the team distinguish Asian expatriate microbes from locals, along with chemical and meteorological methods, says Smith.

The research was physically challenging. "Mt. Bachelor is a very snowy place and one of the windiest mountains in North America," says Smith. "Some summit days were an endurance marathon. Wearing latex gloves when it's 20 degrees below zero is not fun. But it was a worthwhile sacrifice for science, and I would happily do it again."

Conducting the research also changed how Smith views the sky. "Now when I look at the clouds, I see microbial sanctuaries," he says.

A PDF of the manuscript can be found online at http://bit.ly/asmtip1212a. Formal publication is scheduled for the February 2013 issue of Applied and Environmental Microbiology.

(D.J. Smith, H.J. Timonen, D.A. Jaffe, D.W. Griffin, M.N. Birmele, K.D. Perry, P.D. Ward, M.S. Robert, 2012. Intercontinental dispersal of bacteria and archaea in transpacific winds. Appl. Environ. Microbiol. (E-pub ahead of print 7 Dec. 2012).

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>