Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a Primordial Metabolism in Microbes

21.03.2019

Microbiologists from Brunswick, Konstanz und Tübingen in Germany discover how microbes can grow from iron-sulfur-mineral conversions

Microorganisms are well known to grow at the expense of almost any chemical reaction if it can deliver a small fraction of the cell internal “energy currency “ATP. Now, a team of German environmental microbiologists from the Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures in Brunswick, the University of Konstanz, and the University of Tübingen could show that microorganisms can mediate the conversion of iron sulfide and hydrogen sulfide to pyrite. This reaction was postulated to have operated as an early form of energy metabolism on primordial Earth.


Electron microscopy image of a pyrite forming culture enriched from a wastewater treatment plant. Microbial cells are highlighted in red and pyrite crystals in yellow.

DSMZ/Prof. Dr. Michael Pester


Prof. Dr. Michael Pester

DSMZ

Pyrite, better known as fool’s gold, is the most abundant iron-sulfur mineral in sediments. Over geological times, its burial in sediments controlled oxygen levels in the atmosphere and sulfate concentrations in seawater.

The conversion of iron sulfide and hydrogen sulfide to pyrite was also postulated as the energy-delivering process to drive autocatalytic synthesis of organic matter in micro-compartments of marine hydrothermal vents. The latter are currently regarded as the most likely place for life to have emerged on Earth. To date, pyrite formation was considered to be a pure (geo)chemical reaction.

The new results presented here show that also microorganisms can mediate pyrite formation at ambient temperature and gain energy for growth from its overall conversion from iron sulfide and hydrogen sulfide. Michael Pester from the Leibniz Institute DSMZ/TU Braunschweig, Joana Thiel and Bernhard Schink from the University of Konstanz in collaboration with James M. Byrne and Andreas Kappler from the University of Tübingen published these results now in the Proceedings of the National Academy of Sciences U.S.A (https://www.pnas.org/content/early/2019/03/15/1814412116).

Under the exclusion of oxygen, the scientists enriched environmental microorganisms from different sediments and even wastewater treatment plants using iron sulfide, hydrogen sulfide, and carbon dioxide as the only substrates. Here, pyrite formed concomitantly with methane over extended time periods of several months.

Pyrite formation showed a clear biological temperature dependence profile and was strictly coupled to parallel methane formation. The presented results provide insights into a metabolic relationship that could sustain part of the deeply buried biosphere in sediments and lend support to the iron-sulfur-world theory that postulated iron sulfide transformation to pyrite as a key energy-delivering reaction for life to emerge.

Originalpublikation:

Thiel J., Byrne J. M., Kappler A., Schink B., Pester M. (2019) Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proc. Natl. Acad. Sci. U.S.A., in press. https://doi.org/10.1073/pnas.1814412116

Dr. Manuela Schüngel | idw - Informationsdienst Wissenschaft
Further information:
http://www.dsmz.de

More articles from Life Sciences:

nachricht Pinpointing Pollutants from Space
15.11.2019 | Max-Planck-Institut für Chemie

nachricht Chemists use light to build biologically active compounds
15.11.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>