Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cells protect against acute pancreatitis

23.11.2011
Researchers identify new therapeutic target for pancreas' dangerous, sudden swelling and inflammation

NYU Langone Medical Center researchers have discovered the novel protective role dendritic cells play in the pancreas. The new study, published in the November issue of journal Gastroenterology, shows dendritic cells can safeguard the pancreas against acute pancreatitis, a sudden dangerous swelling and inflammation of the pancreas gland.

"Our study findings demonstrate that an abundance of dendritic cells are needed in the pancreas for normal, healthy pancreatic function, especially when there are high levels of inflammation caused by acute pancreatitis," said senior author George Miller, MD, assistant professor, Departments of Surgery and Cell Biology at NYU Langone Medical Center. "The study shows that dendritic cells can alleviate cellular stress caused by severe inflammation."

In the new study, researchers found high levels of dendritic cells in the pancreas can protect the organ from acute pancreatitis damage while low levels of dendritic cells in the pancreas are associated with exacerbated pancreas injury including pancreatic necrosis, complete pancreas cell and tissue death.

The pancreas is a vital hormone and enzyme-producing gland assisting in the human body's digestion and absorption of food. However, the gland can become inflamed leading to acute pancreatitis, a serious and potentially life-threatening condition, severe cases can lead to pancreatic necrosis. Its two percent overall mortality rate jumps to 10 to 30 percent in patients with pancreatic necrosis. The disorder results in 200,000 hospital admissions and two billion dollars annually in medical expenses in the United States.

Pancreatitis can be acute or chronic, developing over time. It's caused by gallstones, alcohol abuse, or medications. Symptoms include abdominal pain, nausea and vomiting, and current treatments include hospitalization, medication, restricted diet or surgery. Pancreatitis can be reduced or prevented with removal of the gall bladder, limiting alcohol intake or prescription medication.

Dendritic cells in the body have emerged as important cellular mediators of inflammation. Previous studies by NYU Langone researchers and others have shown the ability of dendritic cells in the body to suppress inflammation in a number of organ-specific inflammatory conditions including liver injury. Upon exposure to inflammation, dendritic cells suppress inflammation by activating an immune response. However, the cellular regulation of acute pancreatitis was not completely understood until now.

In the new study, researchers induced mice models with acute pancreatitis. As a result, the level of dendritic cells in the pancreas increased by two-fold. This observation identified the innate immune system response of dendritic cells to the excessive swelling and inflammation of the pancreas gland. In addition, researchers tested the effects of dendritic cell depletion in acute pancreatitis mice models. Their experiments showed mice with depleted dendritic cell levels developed pancreatic necrosis and died within four days. Dendritic cell depletion was also associated with a higher infiltration of white blood cells and inflammation markers. The negative effects of dendritic cell depletion experiments show the critical protective role these cells play in pancreatic organ survival.

"We now have a greater understanding of dendritic cells, the key cellular mediators of inflammation, during dangerous acute pancreatitis. These cells play a central role in acute pancreatitis and are required for the pancreas' viability," said Dr. Miller, a member of the NYU Cancer Institute. "Our novel findings show depletion of dendritic cells result in the massive increase in severe pancreas inflammation, injury and organ destruction. We are now one step closer to more effective treatments for this harmful human condition."

The study suggests dendritic cells in the pancreas as new therapeutic targets for reducing any cellular stress on the pancreas from pancreatitis. Further research is needed to elucidate dendritic cell function and develop an immune-directed therapy against acute pancreatitis.

Lead co-authors of the study at NYU Langone included Andrea Bedrosian, MD, research fellow and surgery resident, Department of Surgery and Andrew H. Nguyen, MD. This study was supported by grants from the National Pancreas Foundation, the Society of University Surgeons, and National Institutes of Health.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>