Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the secret of the sugar beet

19.12.2013
Scientists from Germany and Spain announce the sequence of the sugar beet genome

An international team of researchers from the Centre for Genomic Regulation (CRG) in Barcelona, Spain, the Max Planck Institute for Molecular Genetics (MPIMG), Department of Vertebrate Genomics (H. Lehrach) in Berlin, the University of Bielefeld and further partners from academia and the private sector, have been able to sequence and analyse for the first time the sweet genes of beetroot.

The results of the study, that will be published next 18th December in Nature, shed also light on how the genome has been shaped by artificial selection.

What do foodstuff like muffins, bread or tomato sauce have in common? They all contain different amounts of white refined sugar. But, what perhaps may result amazing is that this sugar is probably sourced from a plant very similar to spinach or chard, but much sweeter: the sugar beet. In fact, this plant accounts for nearly 30% of the world’s annual sugar production, according to the Food and Agriculture Organization for the United Nations (FAO). Not in vain for the last 200 years, has it been a crop plant in cultivation all around the world because of its powerful sweetener property.

Sugar beet is the first representative of a group of flowering plants called Caryophyllales, comprising 11,500 species, which has its genome sequenced. This group encompasses other plants of economic importance, like spinach or quinoa, as well as plants with an interesting biology, for instance carnivorous plants or desert plants. 27,421 protein-coding genes were discovered within the genome of the beet, more than are encoded within the human genome. “Sugar beet has a lower number of genes encoding transcription factors than any flowering plant with already known genome”, adds Bernd Weisshaar, a principle investigator from Bielefeld University who was involved in the study. The researchers speculate that beets may harbor so far unknown genes involved in transcriptional control, and gene interaction networks may have evolved differently in sugar beet compared to other species.

Many sequencing projects nowadays targeted at the analysis of novel genomes also address the description of genetic variation within the species of interest. Commonly, “this is achieved by generating sequencing reads obtained from high-throughput sequencing technologies, followed by alignment of these reads against the reference genome to identify differences”, explains Heinz Himmelbauer, a principle investigator of this study. The current work, nevertheless, went one step further and generated genome assemblies from four additional sugar beet lines. This allowed the researchers to obtain a much better picture of intraspecific variation in sugar beet than would have been possible otherwise. In summary, 7 million variants were discovered throughout the genome. However, variation was not uniformly distributed: The authors found regions of high, but also of very low variation, reflecting both the small population size from which the crop was established, as well as the human selection, which has shaped the plants’ genomes.

Thanks to the sugar beet genome sequence made by the researchers and the associated resources generated, future studies on the molecular dissection of natural and artificial selection, gene regulation and gene-environment interaction, as well as biotechnological approaches to customize the crop to different uses in the production of sugar and other natural products, are expected to be held. “Sugar beet will be an important cornerstone of future genomic studies involving plants, due to its taxonomic position”, the authors claim.

Weitere Informationen:
http://bvseq.molgen.mpg.de
http://www.molgen.mpg.de
http://www.crg.eu
http://www.uni-bielefeld.de

Dr. Patricia Marquardt | Max-Planck-Institut
Further information:
http://www.molgen.mpg.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>