Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the mechanism of an ion pump

19.12.2011
Insights obtained from a structural and functional analysis of an ion-pumping protein could benefit future drug discovery efforts

From an analysis of the sodium-transporting vacuolar ATPases (V-ATPases) of the bacterium Enterococcus hirae, Takeshi Murata of the RIKEN Systems and Structural Biology Center, Yokohama, and colleagues recently obtained valuable structural and functional information about a process that pumps protons and other positively charged ions across cellular membranes1.


Figure 1: The crystal structure of the E. hirae V-ATPase with molecules of DCCD (green spheres) bound to E139 at each individual subunit.
Copyright : 2011 Takeshi Murata

Adenosine triphosphate (ATP) is the primary energy ‘currency’ within cells, and numerous enzymes are powered by the metabolic processing of this molecule via a mechanism known as hydrolysis. V-ATPases can exploit this process to pump positively charged ions across cellular membranes. This process occurs at the junction between a rotating ‘K’ domain and a fixed ‘a’ domain within the segment of the protein that resides at the cell membrane, although the specifics remain unclear.

N,N’-dicyclohexylcarbodiimide (DCCD), a chemical that selectively reacts with a specific glutamate amino acid (E139) within the sodium-binding pockets of the K ring, proved valuable in assessing this protein’s function. The researchers demonstrated that DCCD inhibited sodium binding by nearly 30-fold, but that this inhibition was sharply reduced when the enzyme was pretreated with sodium ions, suggesting that the two molecules interact with overlapping targets within the ring.

The K ring is composed of ten identical subunits, and DCCD efficiently reacts with E139 in each of these individual components (Fig. 1). By gathering structural data from the DCCD-treated V-ATPase, Murata and colleagues obtained a snapshot of what the protein looks like in the absence of sodium, which they could in turn compare against the structure of the sodium-bound form.

Although the two structures were largely similar, DCCD treatment triggered a change in E139 that locked the sodium binding sites into an ‘open’ structure that prevented ion retention. The negative charge of E139 made an important contribution to the binding of the positively charged Na+ ion; DCCD appeared to work by neutralizing this charge. The researchers hypothesize that a similar process governs ion release during the transport process; as the K domain rotates, each subunit’s E139 interacts with a positively charged amino acid on the domain, triggering ion release and transfer across the membrane.

Confirming this model will require additional structural data. “We would like to obtain the structure of [the] whole complex containing both the rotor ring and a-subunit,” Murata says. Nevertheless, these findings could prove immediately applicable to the development of more effective ATPase inhibitors, a class of drugs potentially useful for treating cancer and other diseases. “V-ATPases are of considerable pharmacological interest,” says Murata.

The corresponding author for this highlight is based at the Systems and Structural Biology Team, RIKEN Systems and Structural Biology Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Enzymes as double agents: new mechanism discovered in protein modification
07.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Protein linked to cancer acts as a viscous glue in cell division
07.07.2020 | Rensselaer Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>