Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does cooperation require both reciprocity and alike neighbours?

11.06.2012
Max Planck scientists develop new theoretical model on the evolution of cooperation

Evolution by definition is cold and merciless: it selects for success and weeds out failure. It seems only natural to expect that such a process would simply favour genes that help themselves and not others.

Yet cooperative behaviour can be observed in many areas, and humans helping each other are a common phenomenon. Thus, one of the major questions in science today is how cooperative behaviour could evolve. Scientists from the Max Planck Institute of Evolutionary Biology in Plön, Harvard University, and the University of Amsterdam have now developed a new model combining two possible explanations - direct reciprocity and population structure - and found that both repetition and structured population are essential for the evolution of cooperation. The researchers conclude that human societies can best achieve high levels of cooperative behaviour if their individuals interact repeatedly, and if populations exhibit at least a minor degree of structure.

The scientists addressed the question how cooperative behaviour could evolve using a game called the prisoner’s dilemma, which considers two types of players: co-operators who pay a cost to help others; and defectors who avoid paying the cost, while reaping benefits from the co-operators they interact with. In general, everyone would be better off if they had engaged in cooperation, but from the point of view of the individual, defection is more beneficial. Selection will therefore always favour the defectors, and not cooperation. Researchers have used population structure and direct reciprocity to explain why cooperation has nevertheless evolved. In structured populations, co-operators are more likely to interact with other co-operators and defectors with defectors. Direct reciprocity involves the repetition of interaction and is therefore based on experiences gained from prior events involving cooperation. In the past, both approaches have been regarded separately.

Using computer simulations and mathematical models, a group of scientists around Julian Garcia from the Max-Planck Institute of Evolutionary Biology in Plön have developed a new model that takes both concepts into account. They discovered that direct reciprocity alone is not enough, and that population structure is necessary in order to reach a high level of cooperation. When there is some reciprocity, the average level of cooperation increases because alike types are more likely to interact with each other. Additionally, the researchers observed that cooperation occurs if cooperative and defective individuals are highly clustered and repetition is rare. And surprisingly, too much repetition can even harm cooperation in cases when the population structure makes cooperation between individuals very likely. This is due to the fact that reciprocity can protect defectors from invasion by defectors in a similar manner that it prevents cooperation from being invaded by defectors.

“Without population structure, cooperation based on repetition is unstable”, Garcia explains one of the main findings. This is especially true for humans, where repetition occurs regularly and who live in fluid, but not totally unstructured populations. A pinch of population structure helps a lot if repetition is present. “Therefore, the recipe for human cooperation might be: a bit of structure and a lot of repetition”, says Julian Garcia. This phenomenon results in a high average level of cooperation.

Contact

Dr. Julian Garcia
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-224
Email: garcia@­evolbio.mpg.de
Dr. Kerstin Mehnert
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-233
Fax: +49 4522 763-310
Email: mehnert@­evolbio.mpg.de

Original publication
Matthijs van Veelena, Julián Garcíac, David G. Randa and Martin A. Nowaka
Direct reciprocity in structured populations
Published online before print June 4, 2012, doi: 10.1073/pnas.1206694109

Dr. Julian Garcia | EurekAlert!
Further information:
http://www.mpg.de/5836053/cooperative_behaviour

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>