Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does cooperation require both reciprocity and alike neighbours?

11.06.2012
Max Planck scientists develop new theoretical model on the evolution of cooperation

Evolution by definition is cold and merciless: it selects for success and weeds out failure. It seems only natural to expect that such a process would simply favour genes that help themselves and not others.

Yet cooperative behaviour can be observed in many areas, and humans helping each other are a common phenomenon. Thus, one of the major questions in science today is how cooperative behaviour could evolve. Scientists from the Max Planck Institute of Evolutionary Biology in Plön, Harvard University, and the University of Amsterdam have now developed a new model combining two possible explanations - direct reciprocity and population structure - and found that both repetition and structured population are essential for the evolution of cooperation. The researchers conclude that human societies can best achieve high levels of cooperative behaviour if their individuals interact repeatedly, and if populations exhibit at least a minor degree of structure.

The scientists addressed the question how cooperative behaviour could evolve using a game called the prisoner’s dilemma, which considers two types of players: co-operators who pay a cost to help others; and defectors who avoid paying the cost, while reaping benefits from the co-operators they interact with. In general, everyone would be better off if they had engaged in cooperation, but from the point of view of the individual, defection is more beneficial. Selection will therefore always favour the defectors, and not cooperation. Researchers have used population structure and direct reciprocity to explain why cooperation has nevertheless evolved. In structured populations, co-operators are more likely to interact with other co-operators and defectors with defectors. Direct reciprocity involves the repetition of interaction and is therefore based on experiences gained from prior events involving cooperation. In the past, both approaches have been regarded separately.

Using computer simulations and mathematical models, a group of scientists around Julian Garcia from the Max-Planck Institute of Evolutionary Biology in Plön have developed a new model that takes both concepts into account. They discovered that direct reciprocity alone is not enough, and that population structure is necessary in order to reach a high level of cooperation. When there is some reciprocity, the average level of cooperation increases because alike types are more likely to interact with each other. Additionally, the researchers observed that cooperation occurs if cooperative and defective individuals are highly clustered and repetition is rare. And surprisingly, too much repetition can even harm cooperation in cases when the population structure makes cooperation between individuals very likely. This is due to the fact that reciprocity can protect defectors from invasion by defectors in a similar manner that it prevents cooperation from being invaded by defectors.

“Without population structure, cooperation based on repetition is unstable”, Garcia explains one of the main findings. This is especially true for humans, where repetition occurs regularly and who live in fluid, but not totally unstructured populations. A pinch of population structure helps a lot if repetition is present. “Therefore, the recipe for human cooperation might be: a bit of structure and a lot of repetition”, says Julian Garcia. This phenomenon results in a high average level of cooperation.

Contact

Dr. Julian Garcia
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-224
Email: garcia@­evolbio.mpg.de
Dr. Kerstin Mehnert
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-233
Fax: +49 4522 763-310
Email: mehnert@­evolbio.mpg.de

Original publication
Matthijs van Veelena, Julián Garcíac, David G. Randa and Martin A. Nowaka
Direct reciprocity in structured populations
Published online before print June 4, 2012, doi: 10.1073/pnas.1206694109

Dr. Julian Garcia | EurekAlert!
Further information:
http://www.mpg.de/5836053/cooperative_behaviour

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>